Project description:Differential expression was determined in Calu-3 cells between mock infected and infection with one of 3 Influenza viruses (wild-type VN1203, VN1203 mutant PB1-F2del, VN1203 mutant PB2-627E) at different times post infection. Purpose: To obtain samples for transcriptional analysis in triplicate using the VN1203 pathogenicity mutants PB1-F2del and PB2-627E. Overview of Experiment: . Time Points: 0, 3, 7, 12, 18 and 24 hrs post infection. . There are two time points for wild type VN1203. . Done in triplicate. . Triplicates are defined as 3 different wells, plated at the same time using the same cell stock for all replicates. . Time-matched mocks were done in triplicate from the same cell stock as the rest of the samples. . Culture medium (the same as what the virus stock is in) was used for the mock infections. Calu-3 cells were infected with A/Vietnam/1203-CIP048_RG3/2004 (H5N1) (PB1-F2 deletion), A/Vietnam/1203-CIP048_RG3/2004 (H5N1) (PB2-627E mutant) or mock infected and samples were collected at 0, 3, 7, 12, 18 and 24 hpi. Calu-3 cells were infected with WT: A/Vietnam/1203/2004 (H5N1) and samples were collected at 7 and 24 hpi. There are 3 mock and 3 infected replicates for each time point. Expression profiles were determined.
Project description:Periodic outbreaks of highly pathogenic avian H5N1 influenza viruses and the current H1N1 pandemic highlight the need for a more detailed understanding of influenza virus pathogenesis. To investigate the host transcriptional response induced by pathogenic influenza viruses, we used a functional-genomics approach to compare gene expression profiles in lungs from wild-type 129S6/SvEv and interferon receptor (IFNR) knockout mice infected with either the fully reconstructed H1N1 1918 pandemic virus (1918) or the highly pathogenic avian H5N1 virus Vietnam/1203/04 (VN/1203).
Project description:Over the last decade, more than half of humans infected with highly pathogenic avian influenza (HPAI) H5N1 viruses have died, and yet virus-induced host signaling has yet to be clearly elucidated. Airway epithelia are known to produce inflammatory mediators that contribute to HPAI H5N1-mediated pathogenicity, but a comprehensive analysis of the host response in this cell type is lacking. Here, we leveraged a systems biology method called weighted gene correlation network analysis (WGCNA) to identify and statistically validate signaling sub-networks that define the dynamic transcriptional response of human bronchial epithelial cells after infection with influenza A/Vietnam/1203/2004 (H5N1, VN1203). A detailed examination of two sub-networks involved in the immune response and keratin filament formation revealed potential novel mediators of HPAI H5N1 pathogenesis, and additional experiments validated upregulation of these transcripts in response to VN1203 infection in C57BL/6 mice. Using emergent network properties, we provide fresh insight into the host response to HPAI H5N1 virus infection, and identify novel avenues for perturbation studies and potential therapeutic intervention of fatal HPAI H5N1 disease. Calu-3 cells were infected with VN1203 influenza virus and profiled at 0, 3, 7, 12, 18, and 24 hours post infection. There are 3 mock and infected replicates for each time point.
Project description:Highly pathogenic influenza virus inhibit Inflammatory Responses in Monocytes via Activation of the Rar-Related Orphan Receptor Alpha (RORalpha). Low (PR8) and high pathogenic influenza viruses (FPV and H5N1) were used. Monocytes were infected with low (PR8) and high pathogenic influenza viruses (FPV and H5N1)
Project description:Hi-C was used to profile changes in the genome structure of human primary cells at multiple time points in response to infection with active and UV-inactivated H5N1 influenza virus. Human tracheobronchial epithelial cells (HTBE) and monocyte-derived macrophages (MDM) were used. The Influenza A/Vietnam/1203/04 (H5N1) HALo mutant virus is an attenuated H5N1 virus generated from wild-type Influenza A/Vietnam/1203/04 (H5N1) virus as described in Steel, J., et al. J Virol. 2009 Feb; 83(4):1742-53.
Project description:Human tracheobronchial epithelial (HTBE) cells are considered to serve as a good correlate of influenza virus infection in the human respiratory tract. mRNA-Seq analysis was used to profile the cellular transcriptome of HTBE cells at multiple time points in response to infection with influenza A/California/04/09 (H1N1), A/Wyoming/03/03 (H3N2), and A/Vietnam/1203/04 (H5N1) HALo virus. The Influenza A/Vietnam/1203/04 (H5N1) HALo mutant virus is an attenuated H5N1 virus generated from wild-type Influenza A/Vietnam/1203/04 (H5N1) virus as described in Steel, J., et al. J Virol. 2009 Feb; 83(4):1742-53.
Project description:Human tracheobronchial epithelial (HTBE) cells are considered to serve as a good correlate of influenza virus infection in the human respiratory tract. ChIP-Seq analysis was used to profile histone acetylation (H3K27ac) in HTBE cells at multiple time points in response to infection with influenza A/California/04/09 (H1N1), A/Wyoming/03/03 (H3N2), and A/Vietnam/1203/04 (H5N1) HALo virus. The Influenza A/Vietnam/1203/04 (H5N1) HALo mutant virus is an attenuated H5N1 virus generated from wild-type Influenza A/Vietnam/1203/04 (H5N1) virus as described in Steel, J., et al. J Virol. 2009 Feb; 83(4):1742-53.
Project description:Differential expression was determined in Calu-3 cells between mock infected and infection with one of 3 Influenza viruses (wild-type VN1203, VN1203 mutant PB1-F2del, VN1203 mutant PB2-627E) at different times post infection.