Project description:Seed maturation, dormancy and germination are distinct physiological processes. Transition from maturation to dormancy, and from dormancy into germination are not only critical developmental phases in the plant life cycle but are also important agricultural traits. These developmental processes and their phase transitions are fine determined and coordinately regulated by genetic makeup and environmental cues. SCARECROW-LIKE15 (SCL15) has been demonstrated to be essential for repressing the seed maturation programme in vegetative tissues (Gao et al., Nat Commun, 2015, 6:7243). Here we report that SCL15 is also important for seed dormancy maintenance, germination timing and seed vigor performance based on the effects of SCL15 mutation on plant germination, growth and reproduction when compared with wild type Arabidopsis and over-expression lines 35S:SCL15 and Napin:SCL15. Seed dormancy is enhanced by the mutation of SCL15 in a GA signaling dependent way, indicating that SCL15 plays a negative role for primary dormancy release. Seed germination is positively regulated by SCL15 through interaction with ABA, GA and auxin signaling. SCL15 acts as positive regulator of seed vigor and effect of SCL15 mRNA abundance on seed reserve accumulation and seed development during late embryogenesis may contribute to the seed vigor performance.
Project description:Epigenetic regulation of gene expression is critical for controlling embryonic properties during the embryo-to-seedling phase transition. Here we report that a HISTONE DEACETYLASE19 (HDA19)-associated regulator, SCARECROW LIKE15 (SCL15), is essential for repressing the seed maturation program in vegetative tissues. SCL15 is expressed and GFP-tagged SCL15 predominantly localizes to the vascular bundles, particularly in the phloem companion cells and neighbouring specialized cells. Mutation of SCL15 leads to a global shift in gene expression in seedlings to a profile resembling late embryogenesis in seeds. In scl15 seedlings, many genes involved in seed maturation are markedly derepressed and 12S globulin accumulates; this is correlated with elevated levels of histone acetylation at a subset of seed-specific loci. SCL15 physically interacts with HDA19 and direct targets of HDA19-SCL15 association are identified. These studies revealed that SCL15 acts as an HDA19-associated regulator to repress embryonic traits in seedlings.
Project description:There are four major seed developmental phases in Arabidopsis seed development: morphogenesis, maturation, dormancy and germination. What methylation changes occurring in the different phases, if any, remains unknown. To uncover the possible role of DNA methylation in different parts of the seed, we characterized the methylome of four major seed developmental phases of Arabidopsis using Illumina sequencing: global stage (glob) and linear cotyledon stage (lcot) for morphogenesis phase; mature green stage (mg) and post mature green stage (pmg) for maturation phase; dry seed (dry) for dormancy phase; leaves (leaf) from 4 week plant for vegetative tissues. Illumina sequencing of bisulfite-converted genomic DNA from six seed developmental stages in Arabidopsis: global stage (glob), linear cotyledon stage (lcot), mature green stage (mg), post mature green stage (pmg), dry seed (dry) and leaves (leaf) from 4 week plant.
Project description:Seed development, which depends on mother plant genetic background and environmental conditions, is a major component determining seed composition. Seed quality is a main agricultural concern, impacting both food and non-food applications, while also playing a central role in biodiversity conservation and environment protection. Climate change, characterized, among other stresses, by the emergence of extremely high temperatures, constitute a critical global threat to agriculture. Specialized metabolites (SMs) play crucial roles in the interactions of plants and seeds with their environments. Several SMs are known to be protective compounds involved in seed stress responses, thus impacting directly or indirectly their quality. In this study, we performed untargeted metabolomic (LC-MS/MS) and transcriptomic (RNA-Seq) analyses of Arabidopsis thaliana seeds harvested at six developmental stages (Globular, Transition, Torpedo, Bent cotyledon, Mature green and Dry seed), and developed under control and warm temperature conditions. Those data provide an original and valuable resource for future studies on the role of SMs and genes involved in seed warm thermic stress responses and for the study of their regulation and functions during seed development.
Project description:Epigenetic regulation of gene expression is critical for controlling embryonic properties during the embryo-to-seedling phase transition. Here we report that a HISTONE DEACETYLASE19 (HDA19)-associated regulator, SCARECROW LIKE15 (SCL15), is essential for repressing the seed maturation program in vegetative tissues. SCL15 is expressed and GFP-tagged SCL15 predominantly localizes to the vascular bundles, particularly in the phloem companion cells and neighbouring specialized cells. Mutation of SCL15 leads to a global shift in gene expression in seedlings to a profile resembling late embryogenesis in seeds. In scl15 seedlings, many genes involved in seed maturation are markedly derepressed and 12S globulin accumulates; this is correlated with elevated levels of histone acetylation at a subset of seed-specific loci. SCL15 physically interacts with HDA19 and direct targets of HDA19-SCL15 association are identified. These studies revealed that SCL15 acts as an HDA19-associated regulator to repress embryonic traits in seedlings. Two-condition experiment: wild type vs. scl15 mutant seedlings. Biological replicates: 3 wild type and 3 mutant, independently grown and harvested. One replicate per array. Dye-swaps were performed.