Project description:Microsporidia have attracted much attention because they infect a variety of species ranging from protists to mammals, including immunocompromised patients with AIDS or cancer. Aside from the study on Nosema ceranae, few works have focused on elucidating the mechanism in host response to microsporidia infection. Nosema bombycis is a pathogen of silkworm pébrine that causes great economic losses to the silkworm industry. Detailed understanding of the host (Bombyx mori) response to infection by N. bombycis is helpful for prevention of this disease. The 23 K silkworm genome array was used to investigate host responses (i.e., Bombyx mori) occurring at 2, 4, 6 and 8 d post-infection by Nosema bombycis.We focused on elucidating the mechanism of the host response to microsporidia infection, especially for the investigation of host immune response .
Project description:Microsporidia have attracted much attention because they infect a variety of species ranging from protists to mammals, including immunocompromised patients with AIDS or cancer. Aside from the study on Nosema ceranae, few works have focused on elucidating the mechanism in host response to microsporidia infection. Nosema bombycis is a pathogen of silkworm pM-CM-)brine that causes great economic losses to the silkworm industry. Detailed understanding of the host (Bombyx mori) response to infection by N. bombycis is helpful for prevention of this disease. The 23 K silkworm genome array was used to investigate host responses (i.e., Bombyx mori) occurring at 2, 4, 6 and 8 d post-infection by Nosema bombycis.We focused on elucidating the mechanism of the host response to microsporidia infection, especially for the investigation of host immune response . The third instar molted silkworm larvae were in oral infected by Nosema bombycis. In order to known the silkworm host response to Nosema bombycis infection at different time points, samples of infected larvae (i.e., the treatment set) and uninfected larvae (i.e., the control set) were collected at 2, 4, 6 and 8 dpi for RNA extraction and array hybridization. The obtained data were usd to investigate on the interplay of the genome-wide expression profile of hosts.
Project description:The microsporidia Nosema ceranae are intracellular parasites that proliferate in the midgut epithelial cells of honey bees (Apis mellifera). To analyze the pathological effects of those microsporidia, we orally infected honey bee workers 7 days after their emergence. Bees were flash frozen 15 days after the infection. Then, the effects on the gut ventriculi were analyzed and compared to non-infected (control) bees.
Project description:The microsporidia Nosema ceranae are intracellular parasites that proliferate in the midgut epithelial cells of honey bees (Apis mellifera). To analyze the pathological effects of those microsporidia, we orally infected honey bee workers 7 days after their emergence. Bees were flash frozen 15 days after the infection. Then, the effects on the gut ventriculi were analyzed and compared to non-infected (control) bees. Comparisons of control vs Nosema ceranae bees
Project description:Microsporidia are a diverse group of eukaryotic organisms, capable of causing parasitic infections in both vertebrates and invertebrates. During the germination process, there is an increase in the osmotic pressure of microsporidian spores. As part of this study, we cloned a homologous aquaporin gene in Nosema bombycis, and named it Nosema bombycis aquaporin (NbAQP). Sequence analysis revealed that the NbAQP contains an open reading frame with a length of 750 bp and encodes a polypeptide of 249 amino acids. Amino acid sequence homology was greater than 50% that of five aquaporins from other microsporidian species. Indirect immunofluorescence (IFA) and immunogold electron microscopy showed NbAQP to be located predominantly in the spore wall of N. bombycis spores. The results of qRT-PCR analysis revealed that NbAQP expression remained high 0 h after inoculation and decreased sharply to 24 h, increased gradually from 2 days and peaked at 6 days. After expression of NbAQP in Xenopus laevis oocytes, it was observed that NbAQP can promote rapid penetration of water into oocytes. The associated permeation rate was 2-3 times that of the water-injected and uninjected oocytes. Antibody blocking experiments showed that the inhibition rate of spore germination was approximately 28% after antibody blocking. The difference in germination rate between the control group and the NbAQP group was significant (P < 0.05). This study shows for the first time that N. bombycis contains functional water channel proteins and provides a platform suitable for further research into the mechanisms underlying the regulation of NbAQP protein expression. Further study of NbAQP and their inhibitors may have significance for prevention of microsporidiosis.