Project description:Dietary restriction (DR) is the most powerful natural means to extend lifespan. Although several genes can mediate responses to alternate DR regimens, no single genetic intervention has recapitulated the full effects of DR, and no unified system is known for different DR regimens. Here we obtain temporally resolved transcriptomes during calorie restriction and intermittent fasting in Caenorhabditis elegans and find that early and late responses involve metabolism and cell cycle/DNA damage, respectively. We uncover three network modules of DR regulators by their target specificity. By genetic manipulations of nodes representing discrete modules, we induce transcriptomes that progressively resemble DR as multiple nodes are perturbed. Targeting all three nodes simultaneously results in extremely long-lived animals that are refractory to DR. These results and dynamic simulations demonstrate that extensive feedback controls among regulators may be leveraged to drive the regulatory circuitry to a younger steady state, recapitulating the full effect of DR.
Project description:Dietary restriction (DR) has been shown to increase lifespan in organisms ranging from yeast to mammals. This suggests that the underlying mechanisms may be evolutionarily conserved. Indeed, upstream signalling pathways, such as TOR, are strongly linked to DR-induced longevity in various organisms. However, the downstream effector proteins that ultimately mediate lifespan extension are less clear. To shed light on this, we used a proteomic approach on budding yeast. Our reasoning was that analysis of proteome-wide changes in response to DR might enable the identification of proteins that mediate its physiological effects, including lifespan extension. Of over 2500 proteins we identified by liquid chromatography-mass spectrometry, 183 were significantly altered in expression by at least 3-fold in response to DR. Most of these proteins were mitochondrial and/or had clear links to respiration and metabolism. Indeed, direct analysis of oxygen consumption confirmed that mitochondrial respiration was increased several-fold in response to DR. In addition, several key proteins involved in mating, including Ste2 and Ste6, were downregulated by DR. Consistent with this, shmoo formation in response to α-factor pheromone was reduced by DR, thus confirming the inhibitory effect of DR on yeast mating. Finally, we found that Hsp26, a member of the conserved small heat shock protein (sHSP) family, was upregulated by DR and that overexpression of Hsp26 extends yeast replicative lifespan. As overexpression of sHSPs in C. elegans and Drosophila has previously been shown to extend lifespan, our data on yeast Hsp26 suggest that sHSPs may be universally conserved effectors of longevity.
Project description:The SIRT1 deacetylase is one of the best-studied potential mediators of some of the anti-aging effects of calorie restriction (CR); but its role in CR-dependent lifespan extension has not been demonstrated. We previously found that mice lacking both copies of SIRT1 displayed a shorter median lifespan than wild type mice on an ad libitum diet. Here we report that median lifespan extension in CR heterozygote SIRT1+/- mice was identical (51%) to that observed in wild type mice but SIRT1+/- mice displayed a higher frequency of some certain pathologies. Although larger studies in different genetic backgrounds are necessary , these results provide strong initial evidence for the requirement of SIRT1 for the anti-aging effects of CR, but suggest that its high expression is not required for CR-induced lifespan extension. Key words: SIRT1, caloric restriction, lifespan, anti-aging 2-5 month old male mice of 3 different genotypes (SIRT1+/+, SIRT1+/-, and SIRT1-/-) that had normal, reduced or no expression of SIRT1 were treated with either a 40% caloric restricted diet (CR) or an ad libitum diet (AL). 2-4 replicates of each experimental condition were used in the analysis.
Project description:The SIRT1 deacetylase is one of the best-studied potential mediators of some of the anti-aging effects of calorie restriction (CR); but its role in CR-dependent lifespan extension has not been demonstrated. We previously found that mice lacking both copies of SIRT1 displayed a shorter median lifespan than wild type mice on an ad libitum diet. Here we report that median lifespan extension in CR heterozygote SIRT1+/- mice was identical (51%) to that observed in wild type mice but SIRT1+/- mice displayed a higher frequency of some certain pathologies. Although larger studies in different genetic backgrounds are necessary , these results provide strong initial evidence for the requirement of SIRT1 for the anti-aging effects of CR, but suggest that its high expression is not required for CR-induced lifespan extension. Key words: SIRT1, caloric restriction, lifespan, anti-aging
Project description:Dietary restriction extends healthy lifespan in diverse organisms and reduces fecundity. It is widely assumed to induce adaptive reallocation of nutrients from reproduction to somatic maintenance, aiding survival of food shortages in nature. If this were the case, long life under dietary restriction and high fecundity under full feeding would be mutually exclusive, through competition for the same limiting nutrients. Here we report a test of this idea in which we identified the nutrients producing the responses of lifespan and fecundity to dietary restriction in Drosophila. Adding essential amino acids to the dietary restriction condition increased fecundity and decreased lifespan, similar to the effects of full feeding, with other nutrients having little or no effect. However, methionine alone was necessary and sufficient to increase fecundity as much as did full feeding, but without reducing lifespan. Reallocation of nutrients therefore does not explain the responses to dietary restriction. Lifespan was decreased by the addition of amino acids, with an interaction between methionine and other essential amino acids having a key role. Hence, an imbalance in dietary amino acids away from the ratio optimal for reproduction shortens lifespan during full feeding and limits fecundity during dietary restriction. Reduced activity of the insulin/insulin-like growth factor signalling pathway extends lifespan in diverse organisms, and we find that it also protects against the shortening of lifespan with full feeding. In other organisms, including mammals, it may be possible to obtain the benefits to lifespan of dietary restriction without incurring a reduction in fecundity, through a suitable balance of nutrients in the diet.
Project description:DNA repair-deficient Ercc1Δ/- mice show premature cell death, senescence and numerous accelerated aging features limiting lifespan to 4-6 month. Simultaneously they exhibit a ‘survival response’, which suppresses growth and enhances maintenance, resembling the anti-aging response induced by dietary restriction (DR). Here we report that subjecting these progeroid, dwarf mutants to actual dietary restriction (DR) resulted in the largest lifespan increase recorded in mammals. Thirty percent DR tripled median and maximal remaining lifespan, and drastically retarded numerous aspects of accelerated aging, e.g. DR animals retained 50% more neurons and maintained full motoric function. The DR response in Ercc1Δ/- mice resembled DR in wild type animals including reduced insulin signaling. Interestingly, ad libitum Ercc1Δ/- liver expression profiles showed preferential extinction of expression of long genes, consistent with genome-wide accumulation of stochastic, transcription-blocking lesions, which affect long genes more than short ones. DR largely prevented this decline of transcriptional output, indicating that DR prolongs genome function. Our findings strengthen the link between DNA damage and aging, establish Ercc1Δ/- mice as powerful model for identifying interventions to promote healthy aging, reveal untapped potential for reducing endogenous damage, provide new venues for understanding the molecular mechanism of DR, and suggest a counterintuitive DR-like therapy for human progeroid genome instability syndromes and DR-like interventions for preventing neurodegenerative diseases.
Project description:DNA repair-deficient Ercc1Δ/- mice show premature cell death, senescence and numerous accelerated aging features limiting lifespan to 4-6 month. Simultaneously they exhibit a ‘survival response’, which suppresses growth and enhances maintenance, resembling the anti-aging response induced by dietary restriction (DR). Here we report that subjecting these progeroid, dwarf mutants to actual dietary restriction (DR) resulted in the largest lifespan increase recorded in mammals. Thirty percent DR tripled median and maximal remaining lifespan, and drastically retarded numerous aspects of accelerated aging, e.g. DR animals retained 50% more neurons and maintained full motoric function. The DR response in Ercc1Δ/- mice resembled DR in wild type animals including reduced insulin signaling. Interestingly, ad libitum Ercc1Δ/- liver expression profiles showed preferential extinction of expression of long genes, consistent with genome-wide accumulation of stochastic, transcription-blocking lesions, which affect long genes more than short ones. DR largely prevented this decline of transcriptional output, indicating that DR prolongs genome function. Our findings strengthen the link between DNA damage and aging, establish Ercc1Δ/- mice as powerful model for identifying interventions to promote healthy aging, reveal untapped potential for reducing endogenous damage, provide new venues for understanding the molecular mechanism of DR, and suggest a counterintuitive DR-like therapy for human progeroid genome instability syndromes and DR-like interventions for preventing neurodegenerative diseases.
Project description:Hormesis occurs when a low level stress elicits adaptive beneficial responses that protect against subsequent exposure to severe stress. Recent findings suggest that mild oxidative and thermal stress can extend lifespan by hormetic mechanisms. Here we show that the botanical pesticide plumbagin, while toxic to C. elegans nematodes at high doses, extends lifespan at low doses. Because plumbagin is a naphthoquinone that generates free radicals in vivo, we investigated whether it extends lifespan by activating an adaptive cellular stress response pathway. Mammalian NF-E2-related factor 2 (Nrf2) and its C. elegans ortholog SKN-1, mediate protective responses to oxidative stress by promoting target gene expression via antioxidant response elements (ARE). Genetic analyses showed that skn-1 mediates plumbagin’s lifespan-extending effect in C. elegans. Further screening of a series of plumbagin analogs identified three additional naphthoquinones that could induce SKN-1 targets in C. elegans. Naphthazarin showed skn-1-dependent lifespan extension, over an extended dose range compared to plumbagin, while the other naphthoquinones, oxoline and menadione, had differing effects on C. elegans survival and failed to activate ARE reporter expression in cultured mammalian cells. Our findings reveal the potential for low doses of naturally occurring naphthoquinones to extend lifespan by engaging a specific adaptive cellular stress response pathway.