ABSTRACT: Enhanced CLIP (eCLIP) enables robust and scalable transcriptome-wide discovery and characterization of RNA binding protein binding sites [array]
Project description:Enhanced CLIP (eCLIP) enables robust and scalable transcriptome-wide discovery and characterization of RNA binding protein binding sites
Project description:Enhanced CLIP (eCLIP) enables robust and scalable transcriptome-wide discovery and characterization of RNA binding protein binding sites [iCLIP]
Project description:RNA binding proteins (RBPs) play essential roles in cellular physiology by interacting with target RNAs. As defects in protein-RNA recognition lead to human disease, UV-crosslinking and immunoprecipitation (CLIP) of ribonuclear complexes followed by deep sequencing (-seq) is critical in constructing protein-RNA maps to expand our understanding of RBP function. However, current CLIP protocols are technically demanding and involve low complexity libraries that yield squandered sequencing of PCR duplicates and high experimental failure rates. To enable truly large-scale implementation of CLIP-seq, we have developed an enhanced CLIP methodology (eCLIP) that features a decrease of ~10 cycles of requisite amplification with a concomitant >60% decrease in discarded PCR duplicate reads, while maintaining the ability to identify RNA binding with single-nucleotide resolution. By simplifying the generation of paired IgG and size-matched input controls, eCLIP also dramatically improves specificity in discovery of authentic binding sites. To demonstrate that eCLIP enables large-scale and robust profiling of RBPs, 102 eCLIP experiments in biological duplicate for a diverse collection of 74 RBPs in HepG2 and K562 cells were completed (available at https://www.encodeproject.org). We establish that eCLIP is comparable in amplification and sample requirements to ChIP-seq, and enables integrative analysis of diverse RBPs to reveal factor-specific profiles, common artifacts for CLIP experiments and RNA-centric perspectives of RBP activity.
Project description:RNA binding proteins (RBPs) play essential roles in cellular physiology by interacting with target RNAs. As defects in protein-RNA recognition lead to human disease, UV-crosslinking and immunoprecipitation (CLIP) of ribonuclear complexes followed by deep sequencing (-seq) is critical in constructing protein-RNA maps to expand our understanding of RBP function. However, current CLIP protocols are technically demanding and involve low complexity libraries that yield squandered sequencing of PCR duplicates and high experimental failure rates. To enable truly large-scale implementation of CLIP-seq, we have developed an enhanced CLIP methodology (eCLIP) that features a decrease of ~10 cycles of requisite amplification with a concomitant >60% decrease in discarded PCR duplicate reads, while maintaining the ability to identify RNA binding with single-nucleotide resolution. By simplifying the generation of paired IgG and size-matched input controls, eCLIP also dramatically improves specificity in discovery of authentic binding sites. To demonstrate that eCLIP enables large-scale and robust profiling of RBPs, 102 eCLIP experiments in biological duplicate for a diverse collection of 74 RBPs in HepG2 and K562 cells were completed (available at https://www.encodeproject.org). We establish that eCLIP is comparable in amplification and sample requirements to ChIP-seq, and enables integrative analysis of diverse RBPs to reveal factor-specific profiles, common artifacts for CLIP experiments and RNA-centric perspectives of RBP activity.
Project description:RNA binding proteins (RBPs) play essential roles in cellular physiology by interacting with target RNAs. As defects in protein-RNA recognition lead to human disease, UV-crosslinking and immunoprecipitation (CLIP) of ribonuclear complexes followed by deep sequencing (-seq) is critical in constructing protein-RNA maps to expand our understanding of RBP function. However, current CLIP protocols are technically demanding and involve low complexity libraries that yield squandered sequencing of PCR duplicates and high experimental failure rates. To enable truly large-scale implementation of CLIP-seq, we have developed an enhanced CLIP methodology (eCLIP) that features a decrease of ~10 cycles of requisite amplification with a concomitant >60% decrease in discarded PCR duplicate reads, while maintaining the ability to identify RNA binding with single-nucleotide resolution. By simplifying the generation of paired IgG and size-matched input controls, eCLIP also dramatically improves specificity in discovery of authentic binding sites. To demonstrate that eCLIP enables large-scale and robust profiling of RBPs, 102 eCLIP experiments in biological duplicate for a diverse collection of 74 RBPs in HepG2 and K562 cells were completed (available at https://www.encodeproject.org). We establish that eCLIP is comparable in amplification and sample requirements to ChIP-seq, and enables integrative analysis of diverse RBPs to reveal factor-specific profiles, common artifacts for CLIP experiments and RNA-centric perspectives of RBP activity.
Project description:RNA binding proteins (RBPs) play essential roles in cellular physiology by interacting with target RNAs. As defects in protein-RNA recognition lead to human disease, UV-crosslinking and immunoprecipitation (CLIP) of ribonuclear complexes followed by deep sequencing (-seq) is critical in constructing protein-RNA maps to expand our understanding of RBP function. However, current CLIP protocols are technically demanding and involve low complexity libraries that yield squandered sequencing of PCR duplicates and high experimental failure rates. To enable truly large-scale implementation of CLIP-seq, we have developed an enhanced CLIP methodology (eCLIP) that features a decrease of ~10 cycles of requisite amplification with a concomitant >60% decrease in discarded PCR duplicate reads, while maintaining the ability to identify RNA binding with single-nucleotide resolution. By simplifying the generation of paired IgG and size-matched input controls, eCLIP also dramatically improves specificity in discovery of authentic binding sites. To demonstrate that eCLIP enables large-scale and robust profiling of RBPs, 102 eCLIP experiments in biological duplicate for a diverse collection of 74 RBPs in HepG2 and K562 cells were completed (available at https://www.encodeproject.org). We establish that eCLIP is comparable in amplification and sample requirements to ChIP-seq, and enables integrative analysis of diverse RBPs to reveal factor-specific profiles, common artifacts for CLIP experiments and RNA-centric perspectives of RBP activity.
Project description:UV cross-linking and immunoprecipitation (CLIP) methodologies enable the identification of RNA binding sites of RNA-binding proteins (RBPs). Despite improvements in the library preparation of RNA fragments, the current enhanced CLIP (eCLIP) protocol still requires ~4 days of hands-on time and lacks the ability to scale. We present a new method termed antibody barcode CLIP (ABC) that utilizes DNA-barcoded antibodies to multiplex CLIP detection methods. We demonstrate the scalability and simplicity of ABC by performing CLIP on multiple RBPs simultaneously, minimizing sample-to-sample variation, and maintaining the same material requirement for a single eCLIP experiment.
Project description:Identification of in vivo direct RNA targets for RNA binding proteins (RBP) provides critical insight into their regulatory activities and mechanisms. Recently, we described a methodology for enhanced crosslinking and immunoprecipitation followed by high-throughput sequencing (eCLIP-seq) using antibodies against endogenous RNA binding proteins. However, in many cases it is desirable to profile targets of an RNA binding protein for which an immunoprecipitation-grade antibody is lacking. Here we describe a scalable method for using CRISPR/Cas9-mediated homologous recombination to insert a peptide tag into the endogenous RNA binding protein locus. Further, we show that TAG-eCLIP performed using tag-specific antibodies can yield the same robust binding profiles after proper control normalization as eCLIP with antibodies against endogenous proteins. Finally, we note that antibodies against commonly used tags can immunoprecipitate significant amounts of antibody-specific RNA, emphasizing the need for paired controls alongside each experiment for normalization. TAG-eCLIP enables eCLIP profiling of new native proteins where no suitable antibody exists, expanding the RBP-RNA landscape.