Project description:Diet induced obesity in swine was associated with altered cardiovascular functional, miR transcriptome, and proteomic response to ischemia-reperfusion. Furthermore, the GLP-1 mimetic exendin-4 altered functional, miR and protein responses differently in obese versus lean swine, demonstrating the pervasive effect of obesity on modulating cardiac response to pathophysiologies and therapeutics. This study tested the hypothesis that obesity alters the left ventricular microRNA (miR) transcriptome, proteome and functional cardiac response to ischemia-reperfusion (I/R) injury and to glucagon like peptide-1 (GLP-1) receptor activation. Ossabaw swine were fed normal chow or obesogenic diet for 6 months followed by IV infusion of either saline (vehicle) or the GLP-1 mimetic exendin-4 (Ex-4). Left ventricular pressure volume relationships were assessed under baseline conditions, during a 30-minute occlusion of the circumflex artery and during a 2 hour reperfusion period. Cardiac biopsies were obtained from normally-perfused and ischemia-reperfusion territories, and analyzed using Affymetrix 3.0 miR microarray and protein mass spectrometry. I/R was found to depress global cardiac function in lean swine (systolic pressure, end-diastolic volume). In contrast, Ex-4 therapies did not affect blood pressure in obese animals, but significantly reduced end-diastolic volume following the reperfusion period. These divergent physiologic response to regional I/R in obese vs lean hearts were associated with significantly different protein and miRNA changes. Obesity was associated with altered abundance of proteins associated with calcium handling and contractility, and with changes in miRs relating to metabolism, hypertrophy, and cell death, including the miR-15 and miR-30 families, miR-199a, and miR-214. These effects were modified differently by EX-4 treatment in lean vs obese swine. These findings suggest specific miR and proteomic differences contribute to differences in functional cardiac responses to ischemia-reperfusion injury and pharmacologic activation of GLP-1 signaling in the setting of obesity, volume, stroke volume and ejection fraction) with partial amelioration seen in Ex-4 treated animals.
Project description:Glucagon and glucagon-like peptide-1 (GLP-1) are hormones involved in energy homeostasis. GLP-1 receptor (GLP-1R) agonism reduces food intake and delays gastric emptying, and glucagon receptor (GCGR) agonism increases energy expenditure by thermogenesis. BI 456906 is a subcutaneous, once-weekly injectable dual GLP-1R/GCGR agonist in development for the treatment of obesity or non-alcoholic steatohepatitis. Here we show that BI 456906 is a potent dual agonist with an extended half-life in human plasma. Key GLP-1R-mediated mechanisms of reduced food intake, delayed gastric emptying and improved glucose tolerance were confirmed in GLP-1R knockout mice. GCGR activity was confirmed by reduced plasma amino acids, increased hepatic expression of nicotinamide N-methyltransferase and increased energy expenditure. BI 456906 produced greater bodyweight reductions than maximally efficacious semaglutide doses and modulated gene expression, including genes involved in amino acid metabolism. BI 456906 is a potent dual agonist that produces bodyweight-lowering effects through both GLP-1R and GCGR agonism.
Project description:The N-methyl-d-aspartate (NMDA) receptor is a glutamate-activated cation channel critical to many processes in the brain. Genome-wide association studies (GWAS) suggest that glutamatergic neurotransmission and NMDA receptor-mediated synaptic plasticity is important for body weight homeostasis1. Here, we report the engineering and preclinical development of a first-in-class bimodal molecule that integrates NMDA receptor antagonism with glucagon-like peptide-1 (GLP-1) receptor agonism to effectively reverse obesity, hyperglycemia, and dyslipidemia in rodent models of metabolic disease. We demonstrate that GLP-1-directed delivery of the NMDA receptor antagonist MK-801 affects NMDA receptor-mediated synaptic plasticity in the hypothalamus. Importantly, peptide-targeting of MK-801 specifically to GLP-1 receptor-expressing brain regions circumvent adverse physiological and behavioral effects associated with MK-801 monotherapy. In sum, our approach demonstrates the feasibility of cell specific ionotropic receptor-modulation via peptide targeting and highlights the therapeutic potential of unimolecular mixed GLP-1 receptor agonism and NMDA receptor antagonism for obesity treatment.
Project description:The N-methyl-d-aspartate (NMDA) receptor is a glutamate-activated cation channel critical to many processes in the brain. Genome-wide association studies (GWAS) suggest that glutamatergic neurotransmission and NMDA receptor-mediated synaptic plasticity is important for body weight homeostasis1. Here, we report the engineering and preclinical development of a first-in-class bimodal molecule that integrates NMDA receptor antagonism with glucagon-like peptide-1 (GLP-1) receptor agonism to effectively reverse obesity, hyperglycemia, and dyslipidemia in rodent models of metabolic disease. We demonstrate that GLP-1-directed delivery of the NMDA receptor antagonist MK-801 affects NMDA receptor-mediated synaptic plasticity in the hypothalamus. Importantly, peptide-targeting of MK-801 specifically to GLP-1 receptor-expressing brain regions circumvent adverse physiological and behavioral effects associated with MK-801 monotherapy. In sum, our approach demonstrates the feasibility of cell specific ionotropic receptor-modulation via peptide targeting and highlights the therapeutic potential of unimolecular mixed GLP-1 receptor agonism and NMDA receptor antagonism for obesity treatment.
Project description:The N-methyl-D-aspartate (NMDA) receptor is a glutamate-activated cation channel critical to many processes in the brain. Genome-wide association studies (GWAS) suggest that glutamatergic neurotransmission and NMDA receptor-mediated synaptic plasticity is important for body weight homeostasis1. Here, we report the engineering and preclinical development of a first-in-class bimodal molecule that integrates NMDA receptor antagonism with glucagon-like peptide-1 (GLP-1) receptor agonism to effectively reverse obesity, hyperglycemia, and dyslipidemia in rodent models of metabolic disease. We demonstrate that GLP-1-directed delivery of the NMDA receptor antagonist MK-801 affects NMDA receptor-mediated synaptic plasticity in the hypothalamus. Importantly, peptide-targeting of MK-801 specifically to GLP-1 receptor-expressing brain regions circumvent adverse physiological and behavioral effects associated with MK-801 monotherapy. In sum, our approach demonstrates the feasibility of cell specific ionotropic receptor-modulation via peptide targeting and highlights the therapeutic potential of unimolecular mixed GLP-1 receptor agonism and NMDA receptor antagonism for obesity treatment.
Project description:Disruption of peripheral circadian rhyme pathways dominantly leads to metabolic disorders. Studies on circadian rhythm proteins in the heart indicated a role for Clock or Per2 in cardiac metabolism. In fact, Per2-/- mice have larger infarct sizes with a deficient lactate production during myocardial ischemia. To test the hypothesis that cardiac Per2 represents an important regulator of cardiac metabolism during myocardial ischemia, we performed lactate measurements during reperfusion in Per1-/-, Per2-/- or wildtype mice followed by gene array studies using various ischemia-reperfusion protocols comparing wildtype and Per2-/- mice. Lactate measurements in whole blood confirmed a dominant role of Per2 for lactate production during myocardial ischemia. Surprisingly, high-throughput gene array analysis of eight different conditions on one 24-microarray plate revealed dominantly lipid metabolism as differentially regulated pathway in wildtype mice when compared to Per2-/-. In all treatment groups, the enzyme enoyl-CoA hydratase, which is essential in fatty acid beta-oxidation, was regulated in wildtype animals only. Studies using nuclear magnet resonance imaging (NMRI) confirmed altered fatty acid populations with higher mono-unsaturated fatty acid levels in hearts from Per2-/- mice. Unexpectedly, studies on gene regulation during reperfusion revealed solely pro inflammatory genes as differentially regulated 'Per2-genes'. Subsequent studies on inflammatory markers showed increasing IL6 or TNFa levels during reperfusion in Per2-/- mice. In summary, these studies reveal a novel role of cardiac Per2 for fatty acid metabolism or inflammation during myocardial ischemia and reperfusion. We pursued studies on Per2 dependent gene expression during myocardial ischemia or reperfusion to understand its impact on cardiac metabolism. We designed different ischemia and reperfusion protocols and performed a high-throughput expression profiling of 24 samples at a time using an industry-standard whole mouse gene array (Affymetrix, Mouse Gene 2.1 ST 24-Array). To understand differential gene regulation during different conditions we performed 1) 30 minutes of ischemia without reperfusion, 2) ischemic preconditioning (IP, 4 x 5 minutes ischemia and reperfusion), as known cardioprotective mechanism, and 3) 30 minutes of ischemia followed by 60 minutes of reperfusion. Based on three arrays per condition the total number of arrays was 24, which we analyzed at the same time on a multi plate array to avoid inter-array variations. Quality analysis using Partek Genomics Suite 6.6 revealed high confidence in the quality of the microarray data and all samples met 'Quality Assurance/Quality Control' (QA/QC) criteria.
Project description:Heart disease remains the leading cause of death globally. Although reperfusion following myocardial ischemia can prevent death by restoring nutrient flow, ischemia/reperfusion injury can cause significant heart damage. The mechanisms that drive ischemia/reperfusion injury are not well understood; currently, few methods can predict the state of the cardiac muscle cell and its metabolic conditions during ischemia. Here, we explored the energetic sustainability of cardiomyocytes, using a model for cellular metabolism to predict the levels of ATP following hypoxia. We modeled glycolytic metabolism with a system of coupled ordinary differential equations describing the individual metabolic reactions within the cardiomyocyte over time. Reduced oxygen levels and ATP consumption rates were simulated to characterize metabolite responses to ischemia. By tracking biochemical species within the cell, our model enables prediction of the cell’s condition up to the moment of reperfusion. The simulations revealed a distinct transition between energetically sustainable and unsustainable ATP concentrations for various energetic demands. Our model illustrates how even low oxygen concentrations allow the cell to perform essential functions. We found that the oxygen level required for a sustainable level of ATP increases roughly linearly with the ATP consumption rate. An extracellular O2 concentration of ~0.007 mM could supply basic energy needs in non-beating cardiomyocytes, suggesting that increased collateral circulation may provide an important source of oxygen to sustain the cardiomyocyte during extended ischemia. Our model provides a time-dependent framework for studying various intervention strategies to change the outcome of reperfusion.