Project description:MepR is a substrate-responsive repressor of mepR and mepA, which encode itself and a MATE family multidrug efflux pump. Microarray analyses of Staphylococcus aureus SH1000 and its mepR-disrupted derivative revealed changes in expression of many genes in addition to mepR and mepA, notably several involved in virulence Keywords: Staphylococcus aureus, MATE efflux pump, MepR
Project description:Staphylococcus aureus is one of the most important pathogens in humans and animals, multiply resistant strains are increasingly widespread, new agents are needed for the treatment of S. aureus. Rhein, a natural plant product, has potential antimicrobial activity against Staphylococcus aureus. We employed Affymetrix Staphylococcus aureus GeneChipsTM arrays to investigate the global transcriptional profiling of Staphylococcus aureus ATCC25923 treated with rhein. Results provided insight into mechanisms involved in rhein - Staphylococcus aureus interactions. Keywords: rhein response
Project description:We report the use of Next Generation RNA Sequencing for confirming or improving initial identification of small regulatory RNA in Staphylococcus aureus to prodive a list of the most probable RNA molecules transcribed as independent units. Extraction of RNAs in exponential phase of growth in Newman and N315 strains
Project description:Staphylococcus aureus (S. aureus) is an important human and animal pathogen, multiply resistant strains are increasingly widespread, new agents are needed for the treatment of S. aureus. magnolol has potent antimicrobial activity against S. aureus. We employed Affymetrix Staphylococcus aureus GeneChipsTM arrays to investigate the global transcriptional profiling of Staphylococcus aureus ATCC25923 treated with magnolol. Keywords: gene expression array-based, count
Project description:Becker2005 - Genome-scale metabolic network
of Staphylococcus aureus (iSB619)
This model is described in the article:
Genome-scale reconstruction
of the metabolic network in Staphylococcus aureus N315: an
initial draft to the two-dimensional annotation.
Becker SA, Palsson BØ.
BMC Microbiol. 2005; 5: 8
Abstract:
BACKGROUND: Several strains of bacteria have sequenced and
annotated genomes, which have been used in conjunction with
biochemical and physiological data to reconstruct genome-scale
metabolic networks. Such reconstruction amounts to a
two-dimensional annotation of the genome. These networks have
been analyzed with a constraint-based formalism and a variety
of biologically meaningful results have emerged. Staphylococcus
aureus is a pathogenic bacterium that has evolved resistance to
many antibiotics, representing a significant health care
concern. We present the first manually curated elementally and
charge balanced genome-scale reconstruction and model of S.
aureus' metabolic networks and compute some of its properties.
RESULTS: We reconstructed a genome-scale metabolic network of
S. aureus strain N315. This reconstruction, termed iSB619,
consists of 619 genes that catalyze 640 metabolic reactions.
For 91% of the reactions, open reading frames are explicitly
linked to proteins and to the reaction. All but three of the
metabolic reactions are both charge and elementally balanced.
The reaction list is the most complete to date for this
pathogen. When the capabilities of the reconstructed network
were analyzed in the context of maximal growth, we formed
hypotheses regarding growth requirements, the efficiency of
growth on different carbon sources, and potential drug targets.
These hypotheses can be tested experimentally and the data
gathered can be used to improve subsequent versions of the
reconstruction. CONCLUSION: iSB619 represents comprehensive
biochemically and genetically structured information about the
metabolism of S. aureus to date. The reconstructed metabolic
network can be used to predict cellular phenotypes and thus
advance our understanding of a troublesome pathogen.
This model is hosted on
BioModels Database
and identified by:
MODEL1507180070.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.