Project description:Purpose: As estrogen receptor (ER)-positive breast cancer in BRCA1 mutation carriers arises at an older age with less aggressive tumor characteristics than ER negative BRCA1 mutated breast cancer, it has been suggested that these tumors are ?sporadic? and not BRCA1-driven. With the introduction of targeted treatments specific for tumors with a non-functioning BRCA1 or BRCA2 gene, the question whether the BRCA genes are impaired in the tumor, is highly relevant. Therefore, we performed genomic profiling of BRCA1-mutated ER+ tumors. Experimental design: Genomic profiling, BRCA1 promoter methylation assessment, and loss of heterozygosity analysis were done on 16 BRCA1-mutated ER+ tumors. Results were compared with 57 BRCA1-mutated ER- tumors, 36 BRCA2-mutated ER+ associated tumors, and 182 sporadic ER+ tumors [GSE9021, GSE9114, GSE16511, GSE50407]. Results: The genomic profile of BRCA1-mutated ER+ tumors was different from BRCA1-mutated ER- breast tumors, but highly similar to BRCA2-mutated ER+ tumors. In 83% of the BRCA1-mutated ER+ tumors, loss of the wildtype BRCA1 allele was observed. In addition, clinico-pathological variables in BRCA1-mutated ER+ cancer were also more similar to BRCA2-mutated ER+ and sporadic ER+ breast cancer than to BRCA1 mutated ER- cancers. Conclusions: As BRCA1-mutated ER+ tumors show a BRCAness copy number profile and LOH, it is likely that the loss of a functional BRCA1 protein plays a role in tumorigenesis in BRCA1-mutated ER+ tumors. Therefore, we hypothesize that these tumors are sensitive to drugs targeting the BRCA1 gene defect, providing new targeted treatment modalities for advanced BRCA-deficient, ER-positive breast cancer.
Project description:Purpose: As estrogen receptor (ER)-positive breast cancer in BRCA1 mutation carriers arises at an older age with less aggressive tumor characteristics than ER negative BRCA1 mutated breast cancer, it has been suggested that these tumors are ?sporadic? and not BRCA1-driven. With the introduction of targeted treatments specific for tumors with a non-functioning BRCA1 or BRCA2 gene, the question whether the BRCA genes are impaired in the tumor, is highly relevant. Therefore, we performed genomic profiling of BRCA1-mutated ER+ tumors. Experimental design: Genomic profiling, BRCA1 promoter methylation assessment, and loss of heterozygosity analysis were done on 16 BRCA1-mutated ER+ tumors. Results were compared with 57 BRCA1-mutated ER- tumors, 36 BRCA2-mutated ER+ associated tumors, and 182 sporadic ER+ tumors [GSE9021, GSE9114, GSE16511, GSE50407] Results: The genomic profile of BRCA1-mutated ER+ tumors was different from BRCA1-mutated ER- breast tumors, but highly similar to BRCA2-mutated ER+ tumors. In 83% of the BRCA1-mutated ER+ tumors, loss of the wildtype BRCA1 allele was observed. In addition, clinico-pathological variables in BRCA1-mutated ER+ cancer were also more similar to BRCA2-mutated ER+ and sporadic ER+ breast cancer than to BRCA1 mutated ER- cancers. Conclusions: As BRCA1-mutated ER+ tumors show a BRCAness copy number profile and LOH, it is likely that the loss of a functional BRCA1 protein plays a role in tumorigenesis in BRCA1-mutated ER+ tumors. Therefore, we hypothesize that these tumors are sensitive to drugs targeting the BRCA1 gene defect, providing new targeted treatment modalities for advanced BRCA-deficient, ER-positive breast cancer.
Project description:In this study, using microarray technology we did a transcriptome profiling of miRNAs on a group of 52 cases of familial (BRCA1- or BRCA2-mutated, or BRCAX, i.e. familial cases with no mutations in BRCA1 or BRCA2 genes) and sporadic breast cancers. Class comparison of different clinical characteristics of the samples identified miR-342 as the miRNA with the most significant association with estrogen receptor (ER) status (categorised as positive and negative) of the samples analysed. As ER is one of the bio-pathological features currently used in routine clinical practice to aid treatment decision in breast cancer, identification of this miRNA has been promising for finding new mechanisms involved in this tumour type as we had next demonstrated in a cellular model of breast cancer. In the study presented here, microRNAs expression profiling on a well defined cohort of 52 breast cancer cases, followed up for more than 5 years, was used for a class comparison analysis with some relevant clinical characteristics of this tumour type like estrogen, progesterone or epidermal growth factor 2 receptor status.
Project description:Amplification of chromosomal region 11q13, containing the cell cycle regulatory gene CCND1, is frequently found in breast cancer and other malignancies. It is associated with the favourable oestrogen receptor (ER) positive breast tumour phenotype, but also with poor prognosis and treatment failure. 11q13 spans almost 14 Mb and contains more than 200 genes and is affected by various patterns of copy number gains, suggesting complex mechanisms and selective pressure during tumour progression. In the present study we used 32k tiling BAC array CGH to analyse 94 CCND1-amplified breast tumours from sporadic, hereditary and familial breast cancers to fine map chromosome 11q13. A set containing 281 CCND1-non-amplified breast tumours was used for comparisons. We used gene expression data to further validate the functional effect of gene amplification. We identified six core regions covering 11q13.1-q14.1 that were amplified in different combinations. The major core contained CCND1, whereas two cores were found proximal of CCND1 and three distal. The majority of the CCND1-amplified tumours were ER-positive and classified as luminal B. Furthermore, we found that CCND1 amplification is associated with a more aggressive phenotype within histological grade 2 tumours and luminal A subtype tumours. Amplification was equally prevalent in familial and sporadic tumours, but strikingly rare in BRCA1- and BRCA2- mutated tumours. We conclude that 11q13 includes many potential target genes in addition to CCND1. Genomic profiling of 94 CCND1-amplified breast tumors using tiling BAC aCGH. A number of cases were hybridized as replicates or replicate as dye-swaps.
Project description:In this study, using microarray technology we did a transcriptome profiling of miRNAs on a group of 52 cases of familial (BRCA1- or BRCA2-mutated, or BRCAX, i.e. familial cases with no mutations in BRCA1 or BRCA2 genes) and sporadic breast cancers. Class comparison of different clinical characteristics of the samples identified miR-342 as the miRNA with the most significant association with estrogen receptor (ER) status (categorised as positive and negative) of the samples analysed. As ER is one of the bio-pathological features currently used in routine clinical practice to aid treatment decision in breast cancer, identification of this miRNA has been promising for finding new mechanisms involved in this tumour type as we had next demonstrated in a cellular model of breast cancer.
Project description:Breast tumors from BRCA1 germ line mutation carriers typically exhibit features of the basal-like molecular subtype. However, the specific genes recurrently mutated as a consequence of BRCA1 dysfunction have not been fully elucidated. In this study, we utilized gene expression profiling to molecularly subtype 577 breast tumors, including 73 breast tumors from BRCA1/2 mutation carriers. Focusing on the RB1 locus, we analyzed 33 BRCA1-mutated, 36 BRCA2-mutated and 48 non-BRCA1/2-mutated breast tumors using a custom-designed high-density oligomicroarray covering the RB1 gene. We found a strong association between the basal-like subtype and BRCA1-mutated breast tumors and the luminal B subtype and BRCA2-mutated breast tumors. RB1 was identified as a major target for genomic disruption in tumors arising in BRCA1 mutation carriers and in sporadic tumors with BRCA1 promoter-methylation, but rarely in other breast cancers. Homozygous deletions, intragenic breaks, or microdeletions were found in 33% of BRCA1-mutant tumors, 36% of BRCA1 promoter-methylated basal-like tumors, 13% of non-BRCA1 deficient basal-like tumors, and 3% of BRCA2-mutated tumors. In addition, RB1 was frequently inactivated by gross gene disruption in BRCA1-related hereditary breast cancer and BRCA1-methylated sporadic basal-like breast cancer, but rarely in BRCA2-hereditary breast cancer and non-BRCA1-deficient sporadic breast cancers. Together, our findings demonstrate the existence of genetic heterogeneity within the basal-like breast cancer subtype that is based upon BRCA1-status. Gene expression profiling of breast tumors. Dual color common reference gene expression study using 55K oligonucleotide microarrays.
Project description:We have analyzed, using DNA microarrays, putative differences in gene-expression level between hereditary BRCA1 mutation-linked and sporadic breast cancer. Our results show that a previously reported marked difference between BRCA1-mutation linked and sporadic breast cancer was probably due to uneven stratification of samples with different ER status and basal-like versus luminal-like subtype. We observed that apparent difference between BRCA1-linked and other types of breast cancer found in univariate analysis was diminished when data were corrected for ER status and molecular subtype in multivariate analyses. In fact, the difference in gene expression pattern of BRCA1-mutated and sporadic cancer is very discrete. These conclusions were supported by the results of Q-PCR validation. We also found that BRCA1 gene inactivation due to promoter hypermethylation had similar effect on general gene expression profile as mutation-induced protein truncation. This suggests that in the molecular studies of hereditary breast cancer, BRCA1 gene methylation should be recognized and considered together with gene mutation. We analyzed 35 breast cancer specimens. Surgical samples obtained during mastectomy were flash-frozen in liquid nitrogen and stored at -80°C. Only samples from patients without neoadjuvant chemotherapy were used in this study as chemotherapy may seriously affect gene expression profile. All tissue samples were collected at the Pomeranian Medical University in Szczecin. Seventeen tumor samples were collected from patients with hereditary breast cancer: 12 were derived from tumors affecting women with hereditary BRCA1 mutation, the only one from a woman with BRCA2 mutation, while another eight cases had familial history of breast/ovarian cancer, but were negative for the BRCA1/2 mutations (so called BRCAx cases). Proportion of BRCA1 and BRCA2 mutated tumors was typical for the Polish population. Ten samples were derived from patients with apparently sporadic disease (no familial history of cancer) while 4 patients had a history of familial cancer aggregation (FCA) but without prevalence of breast/ovarian cancers. Thus, these samples were merged with sporadic samples in most of the analyses. All BRCA1 mutation-linked tumors in our study were negative for estrogen receptor (by immunohistochemistry, standard procedures for ER, PGR and HER2 staining were applied), while the only BRCA2-mutated tumor was ER-positive. There were 26 ductal and 5 medullary carcinomas within the study group, which is consistent with the distribution of histopathological types in BRCA1 mutation carriers. Patients were diagnosed at stage T1-2, N0-1 and M0. Caution: this submission contains the data from 6 microarrays done on the normal/pathologically unchanged breast tissue from breast cancer patiets. The data from normal tissues was not analyzed in the paper BRCA1-related gene signature in breast cancer is strongly influenced by ER status and molecular type by Lisowska et al., 2011, Front Biosci (Elite Ed). 2011 Jan 1;3:125-36
Project description:Breast tumors from BRCA1 germ line mutation carriers typically exhibit features of the basal-like molecular subtype. However, the specific genes recurrently mutated as a consequence of BRCA1 dysfunction have not been fully elucidated. In this study, we utilized gene expression profiling to molecularly subtype 577 breast tumors, including 73 breast tumors from BRCA1/2 mutation carriers. Focusing on the RB1 locus, we analyzed 33 BRCA1-mutated, 36 BRCA2-mutated and 48 non-BRCA1/2-mutated breast tumors using a custom-designed high-density oligomicroarray covering the RB1 gene. We found a strong association between the basal-like subtype and BRCA1-mutated breast tumors and the luminal B subtype and BRCA2-mutated breast tumors. RB1 was identified as a major target for genomic disruption in tumors arising in BRCA1 mutation carriers and in sporadic tumors with BRCA1 promoter-methylation, but rarely in other breast cancers. Homozygous deletions, intragenic breaks, or microdeletions were found in 33% of BRCA1-mutant tumors, 36% of BRCA1 promoter-methylated basal-like tumors, 13% of non-BRCA1 deficient basal-like tumors, and 3% of BRCA2-mutated tumors. In addition, RB1 was frequently inactivated by gross gene disruption in BRCA1-related hereditary breast cancer and BRCA1-methylated sporadic basal-like breast cancer, but rarely in BRCA2-hereditary breast cancer and non-BRCA1-deficient sporadic breast cancers. Together, our findings demonstrate the existence of genetic heterogeneity within the basal-like breast cancer subtype that is based upon BRCA1-status.