Project description:The Notch1 gene is a major oncogenic driver and therapeutic target in T-cell acute lymphoblastic leukemia (T-ALL). However, inhibition of NOTCH signaling with γ-secretase inhibitors (GSIs) has shown limited antileukemic activity in clinical trials. Here we performed an expression-based virtual screening to identify highly active antileukemic drugs that synergize with NOTCH1 inhibition in T-ALL. Among these, withaferin A demonstrated the strongest cytotoxic and GSI-synergistic antileukemic effects in vitro and in vivo. Mechanistically, network perturbation analyses showed eIF2A-phosphorylation-mediated inhibition of protein translation as a critical mediator of the antileukemic effects of withaferin A and its interaction with NOTCH1 inhibition. Overall, these results support a role for anti-NOTCH1 therapies and protein translation inhibitor combinations in the treatment of T-ALL.
Project description:Background: Interaction between key signaling mechanisms is important to generate the diversity in signaling output required for proper control of cellular differentiation and function, although the molecular manifestations of such cross-talk are only partially understood. Notch signaling and the cellular response to hypoxia intersect at different points in the signaling cascades, and in this report we analyze the consequences of this cross-talk at the transcriptome level. Results: Mouse ES cells were subjected to various combinations of hypoxia and/or activated Notch signaling, and the transcriptome changes could be grouped into different categories, reflecting various modes of hypoxia and Notch signaling integration. Two principal categories of novel Notch- and hypoxia-induced genes were identified: i) a larger set of genes induced by one pathway and not significantly affected by the activity status of the other pathway; and ii) a smaller set of genes co-regulated by Notch and hypoxia. In the latter category, we identified genes that were induced by hypoxia and the expression of which was enhanced by active Notch signaling. In addition, a number of genes were induced by Notch and hypoxia independently, and a final category of genes required simultaneous activation of Notch and hypoxia to be significantly induced. Several of the hypoxia- and Notch-induced genes were found to be upregulated in various forms of cancer. Conclusions: We identify novel Notch and hypoxia downstream genes and genes co-regulated by the two pathways, providing a molecular platform to better understand the intersection between the two signaling cascades in normal development and cancer.
Project description:Melanoma is one of the most serious forms of skin cancer, and its increasing incidence coupled with non-lasting therapeutic options for metastatic disease highlight the need for additional novel approaches for its management. In this study, we determined the potential interactions between polo-like kinase 1 (PLK1, a serine/threonine kinase involved in mitotic regulation) and NOTCH1 (a type I transmembrane protein deciding cell fate during development) in melanoma. Employing an in-house human melanoma tissue microarray (TMA) containing multiple cases of melanomas and benign nevi, coupled with high-throughput, multispectral quantitative fluorescence imaging analysis, we found a positive correlation between PLK1 and NOTCH1 in melanoma. Further, TCGA database analysis of melanoma patients showed an association of higher mRNA levels of PLK1 and NOTCH1 with poor overall as well as disease-free survival. Next, utilizing small-molecule inhibitors of PLK1 and NOTCH (BI 6727 and MK-0752, respectively), we found a synergistic anti-proliferative response of combined treatment in multiple human melanoma cells. To determine the molecular targets of the overall and synergistic responses of combined PLK1-NOTCH inhibition, we conducted RNA-sequencing analysis employing a unique regression model with interaction terms. We identified the modulations of several key genes relevant to melanoma progression/metastasis, including MAPK, PI3K, and RAS, as well as some new genes such as Apobec3G, BTK and FCER1G which have not been well-studied in melanoma. In conclusion, our study demonstrated a synergistic anti-proliferative response of a concomitant targeting of PLK1 and NOTCH in melanoma, unravelling a potential novel therapeutic approach for detailed preclinical/clinical evaluation.
Project description:Glucocorticoids are an essential component of the treatment of lymphoid malignancies and resistance to glucocorticoid therapy constitutes a prominent clinical problem in relapsed and refractory lymphoblastic leukemias. Constitutively active NOTCH signaling is involved in the pathogenesis of over 50% of T-cell lymphoblastic leukemia (T-ALL) which harbor activating mutations in the NOTCH1 gene. Aberrant NOTCH1 signaling has been shown to protect normal thymocytes from glucocorticoid induced cell death. Here we analyzed the interaction of glucocorticoid therapy with inhibition of NOTCH signaling in the treatment of T-ALL. Gamma-secretase inhibitors (GSI), which block the activation of NOTCH receptors, amplified the transcriptional changes induced by glucocorticoid treatment, including glucocorticoid receptor autoinduction and restored sensitivity to dexamethasone in glucocorticoid-resistant T-ALL cells. Apoptosis induction upon inhibition of NOTCH signaling and activation of the glucocorticoid receptor was dependent on transcriptional upregulation of BIM and subsequent activation of the mitochondrial/intrinsic cell death pathway. Finally, we used a mouse xenograft model of T-ALL to demonstrate that combined treatment with dexamethasone and a GSI results in improved antileukemic effects in vivo. These studies provide insight in the mechanisms of glucocorticoid resistance and serve as rationale for the use of glucocorticoid and GSIs in combination in the treatment of T-ALL. Keywords: Drug response
Project description:Glucocorticoids are an essential component of the treatment of lymphoid malignancies and resistance to glucocorticoid therapy constitutes a prominent clinical problem in relapsed and refractory lymphoblastic leukemias. Constitutively active NOTCH signaling is involved in the pathogenesis of over 50% of T-cell lymphoblastic leukemia (T-ALL) which harbor activating mutations in the NOTCH1 gene. Aberrant NOTCH1 signaling has been shown to protect normal thymocytes from glucocorticoid induced cell death. Here we analyzed the interaction of glucocorticoid therapy with inhibition of NOTCH signaling in the treatment of T-ALL. Gamma-secretase inhibitors (GSI), which block the activation of NOTCH receptors, amplified the transcriptional changes induced by glucocorticoid treatment, including glucocorticoid receptor autoinduction and restored sensitivity to dexamethasone in glucocorticoid-resistant T-ALL cells. Apoptosis induction upon inhibition of NOTCH signaling and activation of the glucocorticoid receptor was dependent on transcriptional upregulation of BIM and subsequent activation of the mitochondrial/intrinsic cell death pathway. Finally, we used a mouse xenograft model of T-ALL to demonstrate that combined treatment with dexamethasone and a GSI results in improved antileukemic effects in vivo. These studies provide insight in the mechanisms of glucocorticoid resistance and serve as rationale for the use of glucocorticoid and GSIs in combination in the treatment of T-ALL. Experiment Overall Design: Duplicate samples (biologic replicas) from CUTLL1 cells were treated for 24 hours with vehicle only (DMSO), dexamethasone (1microM), a gamma-secretase inhibitor (CompE 100nM) and a combination of dexamethasome plus gamma secretase inhibitor at the same concentrations indicated before. Gene expression profiling was analyzed to identify gene expression signatures assocuated with glucocorticoid treatment (dexamethasone), inhibition of NOTCH1 by gamma secretase inhibitor (CompE) or the combination of both treatments.
Project description:Registered systemic treatment options for glioblastoma patients are limited, particularly for progressive glioblastoma, including bevacizumab in the US and some other countries as well as lomustine. The phase II REGOMA trial suggested an improvement of overall survival in progressive glioblastoma by the multi-tyrosine kinase inhibitor regorafenib. This has not been confirmed by GBM AGILE, however. Of note, regorafenib has been administered as monotherapy in progressive glioblastoma or as an addition to standard of care in newly diagnosed glioblastoma. Rational combination therapies involving regorafenib, instead of entirely discontinuing any consideration of this compound, might be therefore a reasonable strategy. We addressed this research gap and used an innovative discovery and validation approach to identify functionally-instructed combination therapies. We applied a genome-wide CRISPR-Cas9-based functional genomics experimental approach including activation and knockout screens for the discovery of potential molecular targets modifying the therapeutic efficacy of regorafenib in experimental glioma. Selected functionally instructed molecular hits were then validated regarding synergistic interaction in vitro, ex vivo and in two orthotopic mouse models in vivo.This functional genomics approach led to the discovery of several molecular targets. Based on subsequent validation experiments including a customized compound library, we identified novel combination therapies. Particularly, the combination of regorafenib with Bcl-2/Bcl-xL inhibition was among the most promising strategies.