Project description:Nrf2 (NF-E2-related-factor-2) contributes to the maintenance of glucose homeostasis in vivo. Nrf2 suppresses blood glucose levels by protecting pancreatic β-cells from oxidative stress and improving peripheral tissue glucose utilization. To elucidate the molecular mechanisms by which Nrf2 contributes to the maintenance of glucose homeostasis, we generated skeletal muscle (SkM)-specific Keap1-knockout (Keap1MuKO) mice that express abundant Nrf2 in SkM and then examined Nrf2-target gene expression in this tissue. In Keap1MuKO mice, blood glucose levels were significantly downregulated, and the levels of glycogen branching enzyme (Gbe1) mRNA, along with those of glycogen branching enzyme (GBE) protein, were significantly upregulated in mouse SkM. Consistent with this result, chemical Nrf2-inducers promoted Gbe1 mRNA expression in both mouse SkM and C2C12 myotubes. Chromatin-immunoprecipitation analysis demonstrated that Nrf2 binds the Gbe1 upstream promoter regions. In Keap1MuKO mice, muscle glycogen content was strongly reduced, and forced GBE expression in C2C12 myotubes promoted glucose uptake. Therefore, our results demonstrate that Nrf2-induction in SkM increases GBE expression and reduces muscle glycogen content, resulting in improved glucose tolerance. Chromatin occupancy of Nrf2 under CDDO-Im-treated condition were generated by deep sequencing, in dupliplicate
Project description:Nrf2 (NF-E2-related-factor-2) contributes to the maintenance of glucose homeostasis in vivo. Nrf2 suppresses blood glucose levels by protecting pancreatic β-cells from oxidative stress and improving peripheral tissue glucose utilization. To elucidate the molecular mechanisms by which Nrf2 contributes to the maintenance of glucose homeostasis, we generated skeletal muscle (SkM)-specific Keap1-knockout (Keap1MuKO) mice that express abundant Nrf2 in SkM and then examined Nrf2-target gene expression in this tissue. In Keap1MuKO mice, blood glucose levels were significantly downregulated, and the levels of glycogen branching enzyme (Gbe1) mRNA, along with those of glycogen branching enzyme (GBE) protein, were significantly upregulated in mouse SkM. Consistent with this result, chemical Nrf2-inducers promoted Gbe1 mRNA expression in both mouse SkM and C2C12 myotubes. Chromatin-immunoprecipitation analysis demonstrated that Nrf2 binds the Gbe1 upstream promoter regions. In Keap1MuKO mice, muscle glycogen content was strongly reduced, and forced GBE expression in C2C12 myotubes promoted glucose uptake. Therefore, our results demonstrate that Nrf2-induction in SkM increases GBE expression and reduces muscle glycogen content, resulting in improved glucose tolerance.
Project description:To investigate differentially expressed lncRNAs in C2C12 myotubes with/without CoCl2 treatment, we used mouse lncRNA microarray to examine the expression of lncRNAs in C2C12 myotubes and C2C12 myotubes with CoCl2 treatment.
Project description:To investigate differentially expressed circRNAs in C2C12 myotubes with/without CoCl2 treatment, we used mouse circRNA microarray to examine the expression of circRNAs in C2C12 myotubes and C2C12 myotubes with CoCl2 treatment.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.