Project description:Investigation of whole genome gene expression level changes in Aspergillus nidulans OE::rsmA compared to wild-type RDIT9.32 (veA). A twelve array study using total RNA recovered from six separate cultures of Aspergillus nidulans wild-type RDIT9.32 (veA) and six separate cultures of Aspergillus nidulans overexpressing rsmA (restorer of secondary metabolism A), using custom-designed, four-plex arrays. The experiment was divided into two runs. In the first run, three biological replicates each of Aspergillus nidulans wild-type RDIT9.32 (veA) and Aspergillus nidulans carrying a plasmid overexpressing rsmA under the control of the gpdA promoter were assayed. In the second run, three biological replicates each of Aspergillus nidulans wild-type RDIT9.32 (veA) and Aspergillus nidulans overexpressing rsmA at the native locus under the control of the gpdA promoter were assayed.
Project description:Investigation of whole genome gene expression level changes in Aspergillus nidulans AN1599 (PbcR) overexpression mutant, compared to the FGSC A4 wild-type strain. Overexpression of the Zn(II)2Cys6 –type transcription factor, AN1599.4 (PbcR, pimaradiene biosynthetic cluster regulator), activates a secondary metabolite gene cluster in Aspergillus nidulans. Activation of the pathway in Aspergillus nidulans lead to a production of ent-pimara-8(14),15-diene.
Project description:The full genome sequencing of the filamentous fungi Aspergillus nidulans, Aspergillus niger and Aspergillus oryzae has opened the possibilities for studying the cellular physiology of these fungi on a systemic level. As a tool to explore this, we are presenting an Affymetrix GeneChip developed for transcriptome analysis of any of the three above-mentioned aspergilli. Transcriptome analysis of triplicate batch cultivations of all three aspergilli on glucose-and xylose media has been performed, and used to validate the performance of the micro array. By doing gene comparisons of all three species, and cross-analysing this with the expression data, 23 genes, including the xylose transcriptional activator XlnR, have been identified to be a conserved response across the Aspergillus sp. Promoter analysis of the upregulated genes in all three species suggest the XlnR-binding site to be 5’-GGNTAAA-3’. We are thus presenting a validated tool for transcription analysis of three Aspergillus species and a methodology for comparative transcriptomics. Keywords: Physiological response
Project description:Investigation of whole genome gene expression level changes in Aspergillus nidulans AN1599 (PbcR) overexpression mutant, compared to the FGSC A4 wild-type strain. Overexpression of the Zn(II)2Cys6 M-bM-^@M-^Stype transcription factor, AN1599.4 (PbcR, pimaradiene biosynthetic cluster regulator), activates a secondary metabolite gene cluster in Aspergillus nidulans. Activation of the pathway in Aspergillus nidulans lead to a production of ent-pimara-8(14),15-diene. 12x135K array of two separate cultures of FGSC A4 and two separate cultures of oe:AN1599(PbcR) with three separate RNA extractions from each culture. Each 135K array measures expression level of 10,546 genes with 6 probes/transcript. In addition, the array format contains tiling probes for 36 longer transcripts. All probes are in duplicates, giving the total number of 137,562 probes per array.
Project description:This study presents the first global genomic, proteomic, and secondary metabolomic characterization of the filamentous fungus, Aspergillus nidulans, following growth on the International Space Station (ISS). The investigation included the A. nidulans wild-type and 3 mutant strains, two of which were genetically engineered to enhance secondary metabolite (SM) production. Whole genome sequencing (WGS) revealed that ISS conditions altered the A. nidulans genome in specific regions. In strain CW12001, which features overexpression of the SM global regulator laeA, ISS conditions induced a point mutation that resulted in the loss of the laeA stop codon. Differential expression of proteins involved in stress response, carbohydrate metabolic processes, and SM biosynthesis was observed. ISS conditions significantly decreased prenyl xanthone production in the wild-type strain and increased asperthecin production in LO1362 and CW12001, which are deficient in a major DNA repair mechanism. Together, these data provide valuable insights into the genetic and molecular adaptation mechanism of A. nidulans to the spacecraft environment and present many economic benefits.
Project description:Gene expression analysis of four different treatments of Aspergillus nidulans. reference line (A.nidulans), line A (A.nidulans + Streptomyces rapamycinicus), line B (A.nidulans + orsellinic acid), line C (A.nidulans + lecanoric acid)
Project description:The full genome sequencing of the ?lamentous fungi Aspergillus nidulans, Aspergillus niger and Aspergillus oryzae has opened the possibilities for studying the cellular physiology of these fungi on a systemic level. As a tool to explore this, we are presenting an A?ymetrix GeneChip developed for transcriptome analysis of any of the three above-mentioned aspergilli. Transcriptome analysis of triplicate batch cultivations of all three aspergilli on glucose-and xylose media has been performed, and used to validate the performance of the micro array. By doing gene comparisons of all three species, and cross-analysing this with the expression data, 23 genes, including the xylose transcriptional activator XlnR, have been identi?ed to be a conserved response across the Aspergillus sp. Promoter analysis of the upregulated genes in all three species suggest the XlnR-binding site to be 5’-GGNTAAA-3’. We are thus presenting a validated tool for transcription analysis of three Aspergillus species and a methodology for comparative transcriptomics. Keywords: Physiological response Two conditions (glucose and xylose) and three biological replicates of each.
Project description:The study aims essentially at the characterisation of suberin degradation mechanisms by Aspergillus nidulans, at a fundamental level. Suberin is an important protective barrier in plant, thus the study of its biodegradation significantly impacts on phytopatology. In addition, fungal suberin degrading enzymes might provide important insights to develop new waste management, bioremediation and biodeterioration prevention strategies.