Project description:<p>Discovery, Biology, and Risk of Inherited Variants in Breast Cancer (DRIVE) was one of five projects funded in 2010 as part of the NCI's Genetic Associations and Mechanisms in Oncology (GAME-ON) initiative (<a href="http://epi.grants.cancer.gov/gameon/">http://epi.grants.cancer.gov/gameon/</a>). GAME-ON's overall goal was to foster an intra-disciplinary and collaborative approach to the translation of promising research leads deriving from the initial wave of cancer GWAS. Specific goals included replication of previous GWAS findings and identification of new susceptibility loci through meta analyses of existing GWAS data and fine mapping of identified loci to better pinpoint causal variants; and identify germline variants that are associated with risk of multiple cancers. The other four funded GAME-ON projects were: the ColoRectal TransdisciplinaryStudy (CORECT), Elucidating Loci Involved in Prostate Cancer Susceptibility (ELLIPSE), Follow-up of Ovarian Cancer Genetic Association and Interaction Study (FOCI), and Transdisciplinary Research in Cancer of the Lung (TRICL).</p> <p>To identify additional cancer risk loci, improve the precision of fine-mapping, and facilitate cross-cancer analyses, DRIVE investigators performed a meta-analysis of eleven genome-wide association studies of breast cancer: The Australian Breast Cancer Family Study (ABCFS), the British Breast Cancer Study (BBCS), the Breast and Prostate Cancer Cohort Consortium (BPC3), the Breast Cancer Family Registries (BCFR), the Dutch Familial Bilateral Breast Cancer Study (DFBBCS), German Consortium for Hereditary Breast and Ovarian Cancer (GC-HBOC), the Helsinki breast cancer family Study (HEBCS), the Mammary Carcinoma Risk factor Investigation (MARIE), the Singapore and Sweden Breast Cancer Study (SASBAC), the Triple Negative Breast Cancer Study (TNBC), and the UK2 GWAS. These studies comprised a total of 16,062 cases and 46,157 controls. Imputation to the 1,000 Genomes Project Phase 1 v3 ALL reference panel was performed by study, and summary statistics from each study were combined using fixed-effect meta analysis. </p>
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:As the evolution of miRNA genes has been found to be one of the important factors in formation of the modern type of man, we performed a comparative analysis of the evolution of miRNA genes in two archaic hominines, Homo sapiens neanderthalensis and Homo sapiens denisova, and elucidated the expression of their target mRNAs in bain.A comparative analysis of the genomes of primates, including species in the genus Homo, identified a group of miRNA genes having fixed substitutions with important implications for the evolution of Homo sapiens neanderthalensis and Homo sapiens denisova. The mRNAs targeted by miRNAs with mutations specific for Homo sapiens denisova exhibited enhanced expression during postnatal brain development in modern humans. By contrast, the expression of mRNAs targeted by miRNAs bearing variations specific for Homo sapiens neanderthalensis was shown to be enhanced in prenatal brain development.Our results highlight the importance of changes in miRNA gene sequences in the course of Homo sapiens denisova and Homo sapiens neanderthalensis evolution. The genetic alterations of miRNAs regulating the spatiotemporal expression of multiple genes in the prenatal and postnatal brain may contribute to the progressive evolution of brain function, which is consistent with the observations of fine technical and typological properties of tools and decorative items reported from archaeological Denisovan sites. The data also suggest that differential spatial-temporal regulation of gene products promoted by the subspecies-specific mutations in the miRNA genes might have occurred in the brains of Homo sapiens denisova and Homo sapiens neanderthalensis, potentially contributing to the cultural differences between these two archaic hominines.