Project description:MicroRNAs (miRNAs) are small regulatory RNAs that are involved in many biological process in eukaryotes. They play a crucial role in modulating genetic expression of their targets, which makes them integral components of transcriptional regulatory networks. As sponges (phylum Porifera) are commonly considered the most basal metazoan, the in-depth capture of miRNAs from these organisms provides additional clues to the evolution of miRNA families in metazoans. Here, we identified the core proteins involved in the biogenesis of miRNAs, and obtained evidence for bona fide miRNA sequences for two marine sponges Stylissa carteri and Xestospongia testudinaria (11 and 19 respectively). Our analysis identified several miRNAs that are conserved amongst demosponges, and revealed that all of the novel miRNAs identified in these two species are specific to the class Demospongiae.
| S-EPMC4752309 | biostudies-literature
Project description:viral metagenomes from Xestospongia testudinaria
Project description:Turtle barnacles are common epibionts on marine organisms. Chelonibia testudinaria is specific on marine turtles whereas C. patula is a host generalist, but rarely found on turtles. It has been questioned why C. patula, being abundant on a variety of live substrata, is almost absent from turtles. We evaluated the genetic (mitochondrial COI, 16S and 12S rRNA, and amplified fragment length polymorphism (AFLP)) and morphological differentiation of C. testudinaia and C. patula from different hosts, to determine the mode of adaptation exhibited by Chelonibia species on different hosts. The two taxa demonstrate clear differences in shell morphology and length of 4-6(th) cirri, but very similar in arthropodal characters. Moreover, we detected no genetic differentiation in mitochondrial DNA and AFLP analyses. Outlier detection infers insignificant selection across loci investigated. Based on combined morphological and molecular evidence, we proposed that C. testudinaria and C. patula are conspecific, and the two morphs with contrasting shell morphologies and cirral length found on different host are predominantly shaped by developmental plasticity in response to environmental setting on different hosts. Chelonibia testudinaria is, thus, a successful general epibiotic fouler and the phenotypic responses postulated can increase the fitness of the animals when they attach on hosts with contrasting life-styles.
Project description:The giant barrel sponge Xestospongiatestudinaria is an ecologically important species that is widely distributed across the Indo-Pacific. Little is known, however, about the precise biogeographic distribution and the amount of morphological and genetic variation in this species. Here we provide the first detailed, fine-scaled (<200 km(2)) study of the morphological and genetic composition of X. testudinaria around Lembeh Island, Indonesia. Two mitochondrial (CO1 and ATP6 genes) and one nuclear (ATP synthase ? intron) DNA markers were used to assess genetic variation. We identified four distinct morphotypes of X. testudinaria around Lembeh Island. These morphotypes were genetically differentiated with both mitochondrial and nuclear markers. Our results indicate that giant barrel sponges around Lembeh Island, which were all morphologically identified as X. testudinaria, consist of at least two different lineages that appear to be reproductively isolated. The first lineage is represented by individuals with a digitate surface area, CO1 haplotype C5, and is most abundant around the harbor area of Bitung city. The second lineage is represented by individuals with a predominantly smooth surface area, CO1 haplotype C1 and can be found all around Lembeh Island, though to a lesser extent around the harbor of Bitung city. Our findings of two additional unique genetic lineages suggests the presence of an even broader species complex possibly containing more than two reproductively isolated species. The existence of X. testudinaria as a species complex is a surprising result given the size, abundance and conspicuousness of the sponge.
Project description:Urea is one of the dominant organic nitrogenous compounds in the oligotrophic oceans. Compared to the knowledge of nitrogen transformation of nitrogen fixation, ammonia oxidization, nitrate and nitrite reduction mediated by sponge-associated microbes, our knowledge of urea utilization in sponges and the phylogenetic diversity of sponge-associated microbes with urea utilization potential is very limited. In this study, Marinobacter litoralis isolated from the marine sponge Xestospongia testudinaria and the slurry of X. testudinaria were found to have urease activity. Subsequently, phylogenetically diverse bacterial ureC genes were detected in the total genomic DNA and RNA of sponge X. testudinaria, i.e., 19 operative taxonomic units (OTUs) in genomic DNA library and 8 OTUs in cDNA library at 90% stringency. Particularly, 6 OTUs were common to both the genomic DNA library and the cDNA library, which suggested that some ureC genes were expressed in this sponge. BLAST and phylogenetic analysis showed that most of the ureC sequences were similar with the urease alpha subunit of members from Proteobacteria, which were the predominant component in sponge X. testudinaria, and the remaining ureC sequences were related to those from Magnetococcus, Cyanobacteria, and Actinobacteria. This study is the first assessment of the role of sponge bacterial symbionts in the regenerated utilization of urea by the detection of transcriptional activity of ureC gene, as well as the phylogenetic diversity of ureC gene of sponge bacterial symbionts. The results suggested the urea utilization by bacterial symbionts in marine sponge X. testudinaria, extending our understanding of nitrogen cycling mediated by sponge-associated microbiota.