Project description:Transposable elements (TEs) are genomic parasites that constitute the most abundant portions of higher plant genomes. However, whether TE selection occurred during crop domestication remains unknown. HUO is active under normal growth conditions, present at low copy numbers, inserts preferentially into regions capable of transcription, but absent in almost all modern varieties, indicating its removal during rice domestication and modern rice breeding. HUO triggers genomic immunity and dramatically alters genome-wide methylation levels and small RNA biogenesis, as well as global gene expression. Its presence specifically affects agronomic traits by decreasing yield performance and disease resistance but enhancing salt tolerance, which mechanistically explains its domestication removal. Thus, our study reveals a unique retrotransposon as a negative target for maintaining genetic and epigenetic stability during crop domestication and selection.
Project description:Transposable elements (TEs) are genomic parasites that constitute the most abundant portions of higher plant genomes. However, whether TE selection occurred during crop domestication remains unknown. HUO is active under normal growth conditions, present at low copy numbers, inserts preferentially into regions capable of transcription, but absent in almost all modern varieties, indicating its removal during rice domestication and modern rice breeding. HUO triggers genomic immunity and dramatically alters genome-wide methylation levels and small RNA biogenesis, as well as global gene expression. Its presence specifically affects agronomic traits by decreasing yield performance and disease resistance but enhancing salt tolerance, which mechanistically explains its domestication removal. Thus, our study reveals a unique retrotransposon as a negative target for maintaining genetic and epigenetic stability during crop domestication and selection.
Project description:Transposable elements (TEs) are genomic parasites that constitute the most abundant portions of higher plant genomes. However, whether TE selection occurred during crop domestication remains unknown. HUO is active under normal growth conditions, present at low copy numbers, inserts preferentially into regions capable of transcription, but absent in almost all modern varieties, indicating its removal during rice domestication and modern rice breeding. HUO triggers genomic immunity and dramatically alters genome-wide methylation levels and small RNA biogenesis, as well as global gene expression. Its presence specifically affects agronomic traits by decreasing yield performance and disease resistance but enhancing salt tolerance, which mechanistically explains its domestication removal. Thus, our study reveals a unique retrotransposon as a negative target for maintaining genetic and epigenetic stability during crop domestication and selection.
Project description:Transposable elements (TEs) are genomic parasites that constitute the most abundant portions of higher plant genomes. However, whether TE selection occurred during crop domestication remains unknown. HUO is active under normal growth conditions, present at low copy numbers, inserts preferentially into regions capable of transcription, but absent in almost all modern varieties, indicating its removal during rice domestication and modern rice breeding. HUO triggers genomic immunity and dramatically alters genome-wide methylation levels and small RNA biogenesis, as well as global gene expression. Its presence specifically affects agronomic traits by decreasing yield performance and disease resistance but enhancing salt tolerance, which mechanistically explains its domestication removal. Thus, our study reveals a unique retrotransposon as a negative target for maintaining genetic and epigenetic stability during crop domestication and selection.
Project description:Here, we present OryzaPG-DB, a rice proteome database based on shotgun proteogenomics, which incorporates the genomic features of experimental shotgun proteomics data. This version of the database was created from the results of 27 nanoLC-MS/MS runs on a hybrid ion trap-orbitrap mass spectrometer, which offers high accuracy for analyzing tryptic digests from undifferentiated cultured rice cells. Peptides were identified by searching the product ion spectra against the protein, cDNA, transcript and genome databases from Michigan State University, and were mapped to the rice genome. Approximately 3200 genes were covered by these peptides and 40 of them contained novel genomic features. Users can search, download or navigate the database per chromosome, gene, protein, cDNA or transcript and download the updated annotations in standard GFF3 format, with visualization in PNG format. In addition, the database scheme of OryzaPG was designed to be generic and can be reused to host similar proteogenomic information for other species. OryzaPG is the first proteogenomics-based database of the rice proteome, providing peptide-based expression profiles, together with the corresponding genomic origin, including the annotation of novelty for each peptide.
Project description:Rice is one of the most important global food crops, and is also a model organism for cereal research 31 . Complete genome sequencing of rice, together with advances in transcriptomics and proteomics, has had a dramatic impact on plant growth and 5 breeding programs 32 . Genomic analysis of DNA methylation in rice has revealed methylation patterns associated with gene bodies and promoters, and the occurrence of high levels of DNA methylation in the centromeric domain 33 . A genome-wide investigation of acetylation in rice revealed that H3K9ac and H3K27ac are mainly enriched at transcription start sites associated with active transcription 34 . Furthermore, global proteome analysis has shown that phosphorylation and succinylation are involved in diverse cellular and metabolic processes 35, 36 . However, despite these considerable advances in our knowledge, additional large-scale analysis of the lysine acetylome in rice is expected to identify many more Kac sites and acetylated proteins in this improtant crop plant. In this study, affinity enrichment and high-resolution LC-MS/MS were used for large-scale analysis of the lysine acetylome in rice variety Nipponbare. In total, 1353 lysine acetylation sites were detected in 866 protein groups in rice seedlings. Proteomic analysis showed that Kac occurs in proteins involved in diverse biological processes with varied cellular functions and subcellular localization.