Project description:The marine bacterium Phaeobacter inhibens produces tropodithietic acid (TDA), a broad-spectrum antibiotic and anticancer agent. TDA allows P. inhibens to antagonize other bacteria, including several pathogens, and eukaryotes. Since recently antibiotics are also discussed to function as intermicrobial signals. Here we show that ~10% of the genes of P. inhibens are strongly influenced by N-acyl-homoserine lactone (AHL) mediated quorum sensing (QS), switching the bacteriumâs life style from attached to free-living. In an AHL negative mutant of P. inhibens subinhibitory concentrations of TDA caused the same regulatory effect as the AHL. This demonstrates that bacteria can produce antibiotic compounds not only as weapons, but also to substitute their endogenous AHL molecule in QS. The dual function of TDA probably supports the QS system to accelerate regulatory processes and points to a so far neglected role of antibiotics at subinhibitory concentrations in the environment and in microbial interactions. Comparison of whole transcriptomes of wildytype, quorum sensing mutants (pgaI and pgaR) and pgaI grown supplemented with subinhibitory concentration of the antibiotic TDA. RNA isolated in the late exponential growth phase. 4 biological replicates investigated for each strain.
Project description:The marine bacterium Phaeobacter inhibens produces tropodithietic acid (TDA), a broad-spectrum antibiotic and anticancer agent. TDA allows P. inhibens to antagonize other bacteria, including several pathogens, and eukaryotes. Since recently antibiotics are also discussed to function as intermicrobial signals. Here we show that ~10% of the genes of P. inhibens are strongly influenced by N-acyl-homoserine lactone (AHL) mediated quorum sensing (QS), switching the bacterium’s life style from attached to free-living. In an AHL negative mutant of P. inhibens subinhibitory concentrations of TDA caused the same regulatory effect as the AHL. This demonstrates that bacteria can produce antibiotic compounds not only as weapons, but also to substitute their endogenous AHL molecule in QS. The dual function of TDA probably supports the QS system to accelerate regulatory processes and points to a so far neglected role of antibiotics at subinhibitory concentrations in the environment and in microbial interactions.
Project description:The Roseobacter clade is a key group of bacteria in the ocean exhibiting diverse metabolic repertoires and a wide range of symbiotic life-styles. Many Roseobacters possess remarkable capabilities of attachment to both biotic and abiotic surfaces. When attached to each other, these bacteria form multi-cellular structures called rosettes. Phaeobacter inhibens, a well-studied Roseobacter, exhibits various cell sizes and morphologies that are either associated with rosettes or occur as single cells. Here we describe the distribution of P. inhibens morphologies and rosettes within a population. We detect an N-acetylglucosamine-containing polysaccharide on the poles of some cells and at the center of all rosettes. We demonstrate that rosettes are formed by the attachment of individual cells at the polysaccharide-containing pole rather than by cell division. Finally, we show that P. inhibens attachment to abiotic surfaces is hindered by the presence of DNA from itself, but not from other bacteria. Taken together, our findings demonstrate that cell adhesiveness is likely to play a significant role in the life cycle of P. inhibens as well as other Roseobacters.
Project description:Bacteriophages have immense potential as antibiotic therapies and in genetic engineering. Understanding the mechanisms that bacteriophages implement to infect their hosts will allow researchers to manipulate these systems and adapt them to specific bacterial targets. In this study, we isolated a bacteriophage capable of infecting the marine alphaproteobacterium Phaeobacter inhibens and determined its mechanism of infection. Phaeobacter virus MD18, a novel species of bacteriophage isolated in Woods Hole, MA, exhibits potent lytic ability against P. inhibens and appears to be of the Siphoviridae morphotype. The genomic sequence of MD18 displayed significant similarity to another siphophage, the recently discovered Roseobacter phage DSS3P8, but genomic and phylogenetic analyses, assessing host range and a search of available metagenomes are all consistent with the conclusion that Phaeobacter phage MD18 is a novel lytic phage. We incubated MD18 with a library of barcoded P. inhibens transposon insertion mutants and identified 22 genes that appear to be required for phage predation of this host. Network analysis of these genes using genomic position, Gene Ontology (GO) term enrichment, and protein associations revealed that these genes are enriched for roles in assembly of a type IV pilus (T4P) and regulators of cellular morphology. Our results suggest that T4P serve as receptors for a novel marine virus that targets P. inhibens.IMPORTANCE Bacteriophages are useful nonantibiotic therapeutics for bacterial infections as well as threats to industries utilizing bacterial agents. This study identified Phaeobacter virus MD18, a phage antagonist of Phaeobacter inhibens, a bacterium with promising use as a probiotic for aquatic farming industries. Genomic analysis suggested that Phaeobacter phage MD18 has evolved to enhance its replication in P. inhibens by adopting favorable tRNA genes as well as through genomic sequence adaptation to resemble host codon usage. Lastly, a high-throughput analysis of P. inhibens transposon insertion mutants identified genes that modulate host susceptibility to phage MD18 and implicated the type IV pilus as the likely receptor recognized for adsorption. This study marks the first characterization of the relationship between P. inhibens and an environmentally sampled phage, which informs our understanding of natural threats to the bacterium and may promote the development of novel phage technologies for genetic manipulation of this host.
Project description:The Pseudomonas synxantha strain NCIMB10586 produces the antibiotic mupirocin / Pseudomonic acid A from a 75 kb gene cluster; expression of this is regulated through quorum-sensing. We wished to examine expression of the strain during batch growth, in particular of the mupirocin cluster and any other operons regulated in a similar manner. We took samples from three independent cultures at 7 time-points - sampling every 2 hours from 6 to 18 hours.
Project description:Phaeobacter inhibens 2.10 is an effective biofilm former on marine surfaces and has the ability to outcompete other microorganisms, possibly due to the production of the plasmid-encoded secondary metabolite tropodithietic acid (TDA). P. inhibens 2.10 biofilms produce phenotypic variants with reduced competitiveness compared to the wild type. In the present study, we used longitudinal, genome-wide deep sequencing to uncover the genetic foundation that contributes to the emergent phenotypic diversity in P. inhibens 2.10 biofilm dispersants. Our results show that phenotypic variation is not due to the loss of the plasmid that carries the genes for TDA synthesis but instead show that P. inhibens 2.10 biofilm populations become rapidly enriched in single nucleotide variations in genes involved in the synthesis of TDA. While variants in genes previously linked to other phenotypes, such as lipopolysaccharide production (i.e., rfbA) and cellular persistence (i.e., metG), also appear to be selected for during biofilm dispersal, the number and consistency of variations found for genes involved in TDA production suggest that this metabolite imposes a burden on P. inhibens 2.10 cells. Our results indicate a strong selection pressure for the loss of TDA in monospecies biofilm populations and provide insight into how competition (or a lack thereof) in biofilms might shape genome evolution in bacteria. IMPORTANCE Biofilm formation and dispersal are important survival strategies for environmental bacteria. During biofilm dispersal, cells often display stable and heritable variants from the parental biofilm. Phaeobacter inhibens is an effective colonizer of marine surfaces, in which a subpopulation of its biofilm dispersal cells displays a noncompetitive phenotype. This study aimed to elucidate the genetic basis of these phenotypic changes. Despite the progress made to date in characterizing the dispersal variants in P. inhibens, little is understood about the underlying genetic changes that result in the development of the specific variants. Here, P. inhibens phenotypic variation was linked to single nucleotide polymorphisms (SNPs), in particular in genes affecting the competitive ability of P. inhibens, including genes related to the production of the antibiotic tropodithietic acid (TDA) and bacterial cell-cell communication (e.g., quorum sensing). This work is significant as it reveals how the biofilm lifestyle might shape genome evolution in a cosmopolitan bacterium.
Project description:The lag phase is key in resuming bacterial growth, but it remains underexplored particularly in environmental bacteria. Here we use transcriptomics and 13C-labelled metabolomics to show that the lag phase of the model marine bacterium Phaeobacter inhibens is shortened by methylated compounds produced by the microalgal partner, Emiliania huxleyi. Methylated compounds are abundantly produced and released by microalgae, and we show that their methyl groups can be collected by bacteria and assimilated through the methionine cycle. Our findings underscore the significance of methyl groups as a limiting factor during the lag phase and highlight the adjustability of this growth phase. In addition, we show that methylated compounds, typical of photosynthetic organisms, prompt diverse reductions in lag times in bacteria associated with algae and plants, potentially favouring early growth in some bacteria. These findings suggest ways to accelerate bacterial growth and underscore the significance of studying bacteria within an environmental context.
Project description:Strain T5(T) is the type strain of the species Phaeobacter inhibens Martens et al. 2006, a secondary metabolite producing bacterium affiliated to the Roseobacter clade. Strain T5(T) was isolated from a water sample taken at the German Wadden Sea, southern North Sea. Here we describe the complete genome sequence and annotation of this bacterium with a special focus on the secondary metabolism and compare it with the genomes of the Phaeobacter inhibens strains DSM 17395 and DSM 24588 (2.10), selected because of the close phylogenetic relationship based on the 16S rRNA gene sequences of these three strains. The genome of strain T5(T) comprises 4,130,897 bp with 3.923 protein-coding genes and shows high similarities in genetic and genomic characteristics compared to P. inhibens DSM 17395 and DSM 24588 (2.10). Besides the chromosome, strain T5(T) possesses four plasmids, three of which show a high similarity to the plasmids of the strains DSM 17395 and DSM 24588 (2.10). Analysis of the fourth plasmid suggested horizontal gene transfer. Most of the genes on this plasmid are not present in the strains DSM 17395 and DSM 24588 (2.10) including a nitrous oxide reductase, which allows strain T5(T) a facultative anaerobic lifestyle. The G+C content was calculated from the genome sequence and differs significantly from the previously published value, thus warranting an emendation of the species description.
Project description:Quorum sensing is a term used to describe cell-to-cell communication that allows cell density-dependent gene expression. Many Gram-negative bacteria use acyl-homoserine lactone (acyl-HSL) synthases to generate fatty acyl-HSL quorum sensing signals, which function with signal receptors to control expression of specific genes. The fatty acyl group is derived from fatty acid biosynthesis and provides signal specificity, but the variety of signals is limited. We have discovered that the photosynthetic bacterium Rhodopseudomonas palustris uses an acyl-HSL synthase to produce p-coumaroyl-HSL by using environmental p-coumaric acid rather than fatty acids from cellular pools. The bacterium has a signal receptor with homology to fatty acyl-HSL receptors that responds to p-coumaroyl-HSL to regulate global gene expression. We also found that p-coumaroyl-HSL is made by other bacteria including Bradyrhizobium BTAi1 and Silicibacter pomeroyi DSS-3. This discovery extends the range of possibilities for acyl-HSL quorum sensing and raises fundamental questions about quorum sensing within the context of environmental signaling. Keywords: Comparison of transcriptome profiles Transcriptome profiles between Rhodopseudomonas palustris cells grown in the in the presence or absence of pC-HSL were compared.