Project description:To better understand the regulatory mechanisms of water stress response in wheat, the transcript profiles in roots of two wheat genotypes, namely, drought tolerant 'Luohan No.2' (LH) and drought susceptible 'Chinese Spring' (CS) under water-stress were comparatively analyzed by using the Affymetrix wheat GeneChip®. A total of 3831 transcripts displayed 2-fold or more expression changes, 1593 transcripts were induced compared with 2238 transcripts were repressed, in LH under water-stress; Relatively fewer transcripts were drought responsive in CS, 1404 transcripts were induced and 1493 were repressed. Comparatively, 569 transcripts were commonly induced and 424 transcripts commonly repressed in LH and CS under water-stress. 689 transcripts (757 probe sets) identified from LH and 537 transcripts (575 probe sets) from CS were annotated and classified into 10 functional categories, and 74 transcripts derived from 80 probe sets displayed the change ratios no less than 16 in LH or CS. Several kinds of candidate genes were differentially expressed between the LH and CS, which could be responsible for the difference in drought tolerance of the two genotypes.
Project description:Previous studies have shown the increased thermo-tolerance of pathogenic bacteria if pre-exposed to temperatures above their optimal levels prior to a particular heat treatment. It was unclear, however, whether there was a direct relationship between the different gene expression and the induced thermo-tolerance. Microarray analysis was performed to identify the differentially expressed genes during heat stress by comparing the transcriptome of L. monocytogenes under optimal temperature (37°C), and thermo-tolerance inducing (48°C for 30 minutes. A majority of the differentially expressed genes were up-regulated at heat shock as compared to those that were down-regulated when the cells were exposed to thermo-tolerance inducing conditions. Though many of the differentially expressed genes could be tentatively classified based on the current functional classification of genes (COG) per the NCBI database, many of the gene loci could not been attributed to a specific function due to the current limited knowledge on the functional genomics of L. monocytogenes.
Project description:The study was conducted in order to find out the differential change in the transcript of tolerant and susceptible wheat cultivar under heat stress and to decipher the mechanism of thermotolerance in wheat by identifying novel genes and transcription factors involved in the pathways. Wheat cultivar HD2985 (thermotolerant) and HD2329 (thermosusceptible) were exposed to heat stress of 42 degree for 4h at pollination stage and samples were collected from both control and heat shock treated plants for further characterization.
Project description:Based on EST-based in silico gene expression analysis a 15k oligonucleotid microarray has been developped in order to monitor environmental stress-dependent gene expression changes in the wheat caryopsis. Using this array, the effect of water withdrawal, with and and without additional heat stress, during the first five days of grain development (0-5 DAA) has been investigated on two wheat cultivars differing in their drought sensitivity. The combined effect of heat and drought (DH) on gene expression was much significant (8-10% of the investigated genes changed >2-fold) in contrast to drought alone (1.5%). Drought and heat stress resulted in the co-ordinated change of the expression of storage proteins, some enzymes involved in sugar/starch metabolism, cell division-related and histone proteins, certain transcription factors, heat shock proteins, proteases and aquaporins. The potential link between the observed gene expression changes and the parallel histological observations indicating the accelerated development of the stressed grains is discussed.
Project description:Purpose: To identify abiotic stress responsive and tissue specific miRNAs at genome wide level in wheat (Triticum aestivum) Results: Small RNA libraries were constructed from four tissues (root, shoot, mature leaf and spikelets) and three stress treatments of wheat seedlings (control, high temperature, salinity and water-deficit). A total of 59.5 million reads were obtained by high throughput sequencing of eight wheat libraries, of which 32.5 million reads were found to be unique. Using UEA sRNA workbench we identified 47 conserved miRNAs belonging to 20 families, 1030 candidate novel and 51 true novel miRNAs. Several of these miRNAs displayed tissue specific expression whereas few were found to be responsive to abiotic stress treatments. Target genes were predicted for miRNAs identified in this study and their grouping into functional categories revealed that the putative targets were involved in diverse biological processes. RLM-RACE of predicted targets of three conserved miRNAs (miR156, miR160 and miR164) confirmed their mRNA cleavage, thus indicating their regulation at post-transcriptional level by corresponding miRNAs. Expression profiling of confirmed target genes of these miRNAs was also performed. Conclusions: This is the first comprehensive study on profiling of miRNAs in a variety of tissues and in response to several abiotic stresses in wheat. Our findings provide valuable resource for better understanding on the role of miRNAs in stress tolerance as well as plant development. Additionally, this information could be utilized for designing wheat plants for enhanced abiotic stress tolerance and higher productivity.
Project description:We compared the transcriptomic response of polarized microspore stage tomato anthers to long-term mild heat (LTMH-) stress of wild-type and three lines that display increased pollen thermo-tolerance. Our results indicated distinct differences between the thermo-tolerant lines and wild-type, suggesting a dampened response to LTMH in the tolerant lines than in wild-type.