Project description:Fragmented RNA cocktails from FACS sorted Human decidual NK cell, and peripheral blood CD56Bright and CD56Dim NK cells, previously hybridization to HGU95AV2 chips (Koopman et al J Exp Med. 2003 Oct 20;198(8):1201-1), were stored long term at -80C, thawed and hybridized to HG-U133A arrays. Transcriptome analysis of Human decidual NK cells and NK cells from peripheral blood using Affymetrix UGU133A arrays.
Project description:Fragmented RNA cocktails from FACS sorted Human decidual NK cell, and peripheral blood CD56Bright and CD56Dim NK cells, previously hybridization to HGU95AV2 chips (Koopman et al J Exp Med. 2003 Oct 20;198(8):1201-1), were stored long term at -80C, thawed and hybridized to HG-U133B arrays. Transcriptome analysis of Human decidual NK cells and NK cells from peripheral blood using Affymetrix UGU133B arrays.
Project description:Fragmented RNA cocktails from FACS sorted Human decidual NK cell, and peripheral blood CD56Bright and CD56Dim NK cells, previously hybridization to HGU95AV2 chips (Koopman et al J Exp Med. 2003 Oct 20;198(8):1201-1), were stored long term at -80C, thawed and hybridized to HG-U133B arrays.
Project description:Fragmented RNA cocktails from FACS sorted Human decidual NK cell, and peripheral blood CD56Bright and CD56Dim NK cells, previously hybridization to HGU95AV2 chips (Koopman et al J Exp Med. 2003 Oct 20;198(8):1201-1), were stored long term at -80C, thawed and hybridized to HG-U133A arrays.
Project description:Human Natural Killer (NK) cells comprise two main subsets, CD56bright and CD56dim cells, that differ in function, phenotype and tissue localization. To further dissect the heterogeneity of CD56dim cells, we have performed transcriptome analysis and functional ex vivo characterization of human NK cell subsets according to the expression of markers related to differentiation, migration or competence. Here, we show for the first time that the ability to respond to cytokines or to activating receptors is mutually exclusive in almost all NK cells with the exception of CD56dim CD62L+ cells. Indeed, only these cells combine the ability to produce interferon (IFN)-gamma after cytokines and proliferate in vivo during viral infection with the capacity to kill and produce cytokines upon engagement of activating receptors. Therefore, CD56dim CD62L+ cells represent a unique subset of polyfunctional NK cells. Ex vivo analysis of their function, phenotype, telomere length, frequencies during ageing as well as transfer experiments of NK cell subsets into immunodeficient mice suggest that CD56dim CD62L+ cells represent an intermediate stage of NK cell maturation, which after restimulation can accomplish multiple tasks and further develop into terminally differentiated effectors. Gene expression profiles of FACSAria sorted CD3- CD56bright CD62L+, CD3- CD56dim CD62L+ and CD3- CD56dim CD62L- NK cells from human peripheral blood of three donors were compared using Affymetrix GeneChip Human Genome HG-U133_Plus_2. After total RNA extraction, reverse transcription, cDNA extraction, the biotinylated cRNA was transcribed, fragmented, and 15 µg cRNA hybridized in triplicates for each of the three groups to the GeneChip arrays. Group1: CD3- CD56bright CD62L+,.Group2: CD3- CD56dim CD62L+, Group3: CD3- CD56dim CD62L-. Lists of differentially regulated genes were created using High Performance Chip Data Analysis (HPCDA) with Bioretis database (http://www.bioretis-analysis.de). Worldwide data sharing is possible via Bioretis, please ask the authors.
Project description:NK cells are lymphocytes that provide a first defense against viral infections and cancer. They act (i) cytotoxic by killing virus-infected and tumorigenic cells and (ii) immune regulatory by releasing cytokines and chemokines. These innate immune cells are commonly further classified as CD56bright and CD56dim NK cells. Former studies confirmed immune regulatory CD56bright NK cells as progenitors of cytotoxic CD56dim NK cells. CD57 was previously described as T cell marker for senescence and terminal differentiation. Recent studies detected CD57+ and CD57- NK cells among the CD56dim NK cell population and suggested a fully mature developmental status for CD57+ NK cells. The recent NK cell maturation model includes CD34+ hematopoietic stem cells (HSC), which develop into CD56bright NK cells, later into CD56dimCD57- and finally into terminally maturated CD56dimCD57+ (1) (2) (3). The molecular mechanisms of human NK cell differentiation and maturation remain unknown to this date. We performed for the first time a proteomic analysis of these distinct developmental stages of human primary NK cells, isolated from overall 10 healthy human blood donors. CD56bright NK cells versusCD56dim and CD56dimCD57- versus CD56dimCD57+ NK cells were analyzed by using quantitative peptide sequencing, which revealed individual protein signatures (3400 proteins) of these different NK cell developmental stages. Notably, our data support the current NK cell differentiation model by highlighting both strong distinctions between CD56dim/bright NK cells and close relationships between CD57+/- NK cells on the proteomic level. Among the most prominent and conserved regulated proteins, we detected myosin IIa, Calvasculin and Calcyclin with very similar expression patterns. We investigated their sub-cellular localization and observed specific recruitment- and accumulation-events at the NK cell immunological synapse (NKIS) after NK activation.
Project description:Human NK cells were sorted into CD56dim and CD56bright NK cell subpopulations. In order to define characteristics of both populations gene profiling was performed using Affymetrix arrays U133a and U133B.
Project description:In patients treated with memory-like NK cellular therapy with AML, a negative association with CD8a expression on donor NK cells and treatment response was found. The goal of this project was to determine how this finding extended to conventional NK cells, and to characterize the expression and functional role of CD8a. Peripheral blood NK cells were sorted on CD8 expression and analyzed by bulk RNA sequencing within CD56bright and CD56dim NK cell subsets.
Project description:The heterogeneity of human NK cells has not been fully-defined. Using single-cell RNA-sequencing technology, we find more human NK subsets than previously defined by cell surface markers. The transcriptome-based pseudotime analysis support that CD56bright NK cells are precursors of CD56dim NK cells with identification of a transitional stage. Our data significantly expand our understanding of the heterogeneity and development of human NK cells.