Project description:To investigate NUP62 in the regulation of plant defense against Botrytis cinerea , we performed gene expression profiling analysis using data obtained from RNA-seq of nup62 mutant and WT arabidopsis with or without Botrytis cinerea infection.
Project description:Transcriptional profiling of Arabidopsis leaves comparing mock-treated leaves with Botrytis cinerea infected leaves over a time-course (12 and 24 hrs).
Project description:Plant food production is severely affected by fungi; to cope with this problem, farmers use synthetic fungicides. However, the need to reduce fungicide application has led to a search for alternatives, such as biostimulants. Rare-earth elements (REEs) are widely used as biostimulants, but their mode of action and their potential as an alternative to synthetic fungicides have not been fully studied. Here, the biostimulant effect of gadolinium (Gd) is explored using the plant-pathosystem Arabidopsis thaliana–Botrytis cinerea . We determine that Gd induces local, systemic, and long-lasting plant defense responses to B. cinerea, without affecting fungal development. The physiological changes induced by Gd have been related to its structural resemblance to calcium. However, our results show that the calcium-induced defense response is not sufficient to protect plants against B. cinerea, compared to Gd. Furthermore, a genome-wide transcriptomic analysis shows that Gd induces plant defenses and modifies early and late defense responses. However, the resistance to B. cinerea is dependent on JA/ET-induced responses. These data support the conclusion that Gd can be used as a biocontrol agent for B. cinerea. These results are a valuable tool to uncover the molecular mechanisms induced by REEs.
Project description:Two samples from a larger study of the effect of Botrytis cinerea infection on gene expression in Arabidopsis thaliana. These two samples also form part of an investigation of the sequence dependancy of DNA and RNA fragmentation within ChIP-seq and RNA-seq experiments
Project description:Next generation sequencing was performed to identify genes changed in Arabidopsis thaliana upon Botrytis cinerea infection. The goal of the work is to find interesting genes involved in plant defense. The object is to reveal the molecular mechanism of plant defense.
Project description:In this study we show that the Arabidopsis transcription factor MYB46, previously described to regulate secondary cell wall biosynthesis in the vascular tissue of the stem, is pivotal for mediating disease susceptibility to the fungal pathogen Botrytis cinerea. We identified MYB46 by its ability to bind to a new cis element located in the 5´ promoter region of the pathogen-induced Ep5C gene which encodes a type III cell wall-bound peroxidase. We present genetic and molecular evidence indicating that MYB46 modulates the magnitude of Ep5C gene induction following pathogenic insults. Moreover, we demonstrate that different myb46 knock-down mutant plants exhibit increased disease resistance to B. cinerea, a phenotype that is accompanied by selective transcriptional reprogramming of a set of genes encoding cell wall proteins and enzymes, of which extracellular type III peroxidases are conspicuous. In essence our results substantiates that defense-related signaling pathways and cell wall integrity are interconnected, and MYB46 likely functions as a disease susceptibility modulator to B. cinerea through the integration of cell wall remodeling and downstream activation of secondary lines of defense.
Project description:Sound vibration (SV), a mechanical stimulus, can trigger various molecular and physiological changes in plants. Herein, we investigated the effect of SV pre-treatment on Arabidopsis immunity to measure the priming potential of SV. Arabidopsis plants (fourteen-day-old) were treated with sound vibration (1000 Hz, 100 dB) for daily 3 hours up to 10 days in a soundproof chamber. The control plants were kept in a similar sound-proof chamber without SV exposure (daily 3 h) up to 10 days. After that, control and SV-treated plants were challenged with Botrytis cinerea spores. The result showed that SV pre-treatment increases the disease resistance of Arabidopsis against B. cinerea. Samples from three different time points were analyzed through microarray: (1) right after the 10th day of 3h SV treatment (0 h time point), and (2) after Botrytis spore inoculation (12 and 24 hpi time points). RNA was isolated from rosette leaves.
Project description:This SuperSeries is composed of the following subset Series: GSE29642: Arabidopsis defense against Botrytis cinerea: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis (time series) GSE39597: Arabidopsis defense against Botrytis cinerea: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis (tga3-2 knockout data) Refer to individual Series