Project description:Human cytomegalovirus (HCMV) is a major human pathogen whose life-long persistence is enabled by its remarkable capacity to systematically subvert host immune defences. In exploring the finding that HCMV infection upregulates tumor necrosis factor receptor 2 (TNFR2), a ligand for the proinflammatory anti-viral cytokine TNFa, we discovered the underlying mechanism was due to targeting of the protease, A Disintegrin And Metalloproteinase 17 (ADAM17). ADAM17 is the prototype ‘sheddase, a family of proteases that cleaves other membrane-bound proteins to release biologically active ectodomains into the supernatant. HCMV impaired ADAM17 surface expression through the action of two virally-encoded proteins in its UL/b’ region, UL148 and UL148D. Proteomic plasma membrane profiling of cells infected with a HCMV double deletion mutant for UL148 and UL148D with restored ADAM17 expression, combined with ADAM17 functional blockade, showed that HCMV stabilized the surface expression of 114 proteins (p<0.05) in an ADAM17-dependent fashion. These included known substrates of ADAM17 with established immunological functions such as TNFR2 and Jagged1, but also numerous novel host and viral targets, such as Nectin1, UL8 and UL144. Regulation of TNFa-induced cytokine responses and NK inhibition during HCMV infection were dependent on this impairment of ADAM17. We therefore identify a viral immunoregulatory mechanism in which targeting a single sheddase enables broad regulation of multiple critical surface receptors, revealing a paradigm for viral-encoded immunomodulation.
Project description:This study investigates the role of ADAM17 (a disintegrin and metalloproteinase 17) in skin homeostasis. Here, we show that mice lacking ADAM17 in keratinocytes have a normal epidermal barrier and skin architecture at birth, but develop pronounced defects in epidermal barrier integrity soon after birth and chronic dermatitis as adults. The dysregulated expression of epidermal differentiation proteins becomes evident 2 days after birth, followed by transepidermal water loss and inflammatory immune cell infiltration. Our results identify a previously unappreciated critical role of the ADAM17/EGFR signaling axis in maintaining the homeostasis of the postnatal epidermal barrier. The genome-wide effects of ADAM17 deficiency were analyzed using Agilent Whole Mouse Genome microarrays. Conditional keratinocyte-specific ADAM17 knockout mice were generated by crossing Adam17flox/flox mice with keratin-14-Cre (Krt14-Cre) transgenic mice. Adam17flox/+Krt14-Cre mice were mated with Adam17flox/flox mice to generate pups of Adam17flox/flox Krt14-Cre positive (cKO) and Krt14-Cre negative (wild-type) control littermates. The genetic background was a mix of 129Sv and C57BL/6. As material, back skin tissue biopsies (postnatal day 10) from n = 2 wild-type skin and n = 2 ADAM17 epidermal KO skin (matched WT-cKO pairs from two different litters) were used in this study.
Project description:PURPOSE: The goal of this study was to determine the gene expression networks regulated by tumor necrosis factor receptor 2 (TNFR2, or Tnfrsf1b) and to evaluate their potential bearing on immune cell subsets and inflammatory bowel disease (IBD). METHODS: mRNA-seq was performed on isolated distal colons from TNFR2-knockout and wildtype mice. Differentially expressed transcripts were compared to human ulcerative colitis microarray datasets on Gene Expression Omnibus and to mouse immunological expression datasets at the Immunological Genome Project. RESULTS: We identified 252 mouse transcripts whose expressions were significantly altered by the loss of TNFR2. The majority of these transcripts (228 of 252, ~90%) were downregulated in TNFR2-/- colons. TNFR2-regulated genes were able to positively discriminate between ulcerative colitis patients and healthy individuals with ~80% accuracy. Many TNFR2-regulated genes were also highly expressed in CD8+ T cells. CONCLUSIONS: Downregulation of TNFR2 is associated with a gene expression profile that is prominent in IBD and supportive of the role of CD8+ T cells in IBD pathogenesis. MANUSCRIPT ABSTRACT: Increased tumor necrosis factor (TNF) production has been associated with inflammatory bowel disease (IBD), and anti-TNF therapy is a common therapeutic for this patient population. However, the role of TNF or its receptors (TNFR1 and TNFR2) in the immunopathogenesis of inflammatory bowel disease (IBD) remains unclear. Here we report that TNFR2 is protective in spontaneous (IL-10 knockout) and chemically (azoxymethane/dextran sodium sulfate)-induced mouse models of colitis and colitis-associated cancer. Mechanistically, TNFR2-deficiency in hematopoietic cells significantly increased incidence and severity of colitis and colitis-associated cancer characterized by a selective expansion of CD8+ T cells. We identified TNFR2-regulated genes in the colon that were specific for CD8+ T cells, interacted with multiple IBD risk genes, and are important regulators of CD8+ T cell biology. TNFR2 regulated CD8+ T-cell-specific genes that act as genetic susceptibility modifiers for IBD to mitigate the development of a pro-colitogenic milieu. Antibody-mediated depletion of CD8+ T cells prevented colonic inflammation and significantly reduced pathology in IL10-/-/TNFR2-/- deficient mice. Furthermore, adoptive transfer of TNFR2-/- naïve CD8+ T cells resulted in more severe disease than with wildtype naïve CD8+ T cells. Our findings provide insight into the disease modifier role of TNFR2 in the immunopathogenesis of IBD through the modulation of CD8+ T cell responses and support future investigation of this therapeutic target, especially in the subset of IBD patients with CD8+ T-cell dysfunction. Total RNA from distal colons of 8 week-old male wildtype C57Bl/6 and TNFR2-/- mice (n=3 each) was isolated using the PureLink RNA kit (Ambion, Life Technologies). RNA samples were submitted to the Genomic Services Lab at the HudsonAlpha Institute for Biotechnology (Huntsville, AL) for multiplex library preparation, mRNA enrichment, and sequencing. Sequencing was performed to an average depth of 50M paired-end 50bp reads per sample (HiSeq, Illumina, San Diego, CA). Data files containing raw reads were aligned to the mouse genome using Tophat2/Bowtie2. Alignments were assembled into transcript representations with Cufflinks, and statistical tests for differential expression were performed with Cuffdiff 2. An adjusted P value < 0.05 (q<0.05) from the Cuffdiff 2 output was used as the cutoff for statistical significance.
Project description:We report a pleiotropic disease due to loss-of-function mutations in RHBDF2, the gene encoding iRHOM2, in 2 kindreds with recurrent infections in different organs. One patient had recurrent pneumonia but no colon involvement, another had recurrent infectious hemorrhagic colitis but no lung involvement, and the other two experienced recurrent respiratory infections. Loss of iRHOM2, a rhomboid superfamily member that regulates the ADAM17 metalloproteinase, caused defective ADAM17-dependent cleavage and release of cytokines, including TNF and amphiregulin. To understand the diverse clinical phenotypes, we challenged Rhbdf2-/- mice with Pseudomonas aeruginosa by nasal gavage and observed more severe pneumonia whereas infection with Citrobacter rodentium caused worse inflammatory colitis than wild-type mice. The fecal microbiota in the colitis patient had characteristic oral species that can predispose to colitis. Thus, a new human immunodeficiency arising from iRHOM2 deficiency causes divergent disease phenotypes that can involve the local microbial environment.
Project description:We report a pleiotropic disease due to loss-of-function mutations in RHBDF2, the gene encoding iRHOM2, in 2 kindreds with recurrent infections in different organs. One patient had recurrent pneumonia but no colon involvement, another had recurrent infectious hemorrhagic colitis but no lung involvement, and the other two experienced recurrent respiratory infections. Loss of iRHOM2, a rhomboid superfamily member that regulates the ADAM17 metalloproteinase, caused defective ADAM17-dependent cleavage and release of cytokines, including TNF and amphiregulin. To understand the diverse clinical phenotypes, we challenged Rhbdf2-/- mice with Pseudomonas aeruginosa by nasal gavage and observed more severe pneumonia whereas infection with Citrobacter rodentium caused worse inflammatory colitis than wild-type mice. The fecal microbiota in the colitis patient had characteristic oral species that can predispose to colitis. Thus, a new human immunodeficiency arising from iRHOM2 deficiency causes divergent disease phenotypes that can involve the local microbial environment.