Project description:DNA replication during S-phase is accompanied by establishment of sister chromatid cohesion to ensure faithful chromosome segregation. The Eco1 acetyltransferase, helped by factors including Ctf4 and Chl1, concomitantly acetylates the chromosomal cohesin complex to stabilize its cohesive links. Here we show that Ctf4 recruits the Chl1 helicase to the replisome via a conserved interaction motif that Chl1 shares with GINS and polymerase α. We visualize recruitment by EM analysis of a reconstituted Chl1-Ctf4-GINS assembly. The Chl1 helicase facilitates replication fork progression under conditions of nucleotide depletion, however this function does not require Ctf4 interaction. Conversely, Ctf4 interaction, but not helicase activity, is required for Chl1’s role in sister chromatid cohesion. A physical interaction between Chl1 and the cohesin complex during S-phase suggests that Chl1 contacts cohesin to facilitate its acetylation. Our results reveal how Ctf4 forms a replisomal interaction hub that coordinates replication fork progression and sister chromatid cohesion establishment.
Project description:Long noncoding RNAs (lncRNAs) have appeared to be involved in the most diverse cellular processes through multiple mechanisms. Here we describe a previously uncharacterized human lncRNA, CONCR (cohesion regulator noncoding RNA), transcriptionally activated by MYC, which is upregulated in multiple cancer types. The expression of CONCR is cell cycle-regulated, and it is required for cell cycle progression and DNA replication. Moreover, cells depleted of CONCR show severe defects in sister chromatid cohesion, suggesting an essential role for CONCR in cohesion establishment during cell division. CONCR interacts with and regulates the activity of DDX11, a DNA-dependent ATPase and helicase involved in DNA replication. These findings suggest a novel mechanism of action for CONCR in the modulation of DDX11 enzymatic activity, unveiling the direct involvement of a lncRNA in the establishment of sister chromatid cohesion. Characterization of the function of the long noncoding RNA CONCR. Analysis of DDX11 chromatin binding by ChIP-seq in the presence or absence of CONCR.
Project description:Long noncoding RNAs (lncRNAs) have appeared to be involved in the most diverse cellular processes through multiple mechanisms. Here we describe a previously uncharacterized human lncRNA, CONCR (cohesion regulator noncoding RNA), transcriptionally activated by MYC, which is upregulated in multiple cancer types. The expression of CONCR is cell cycle-regulated, and it is required for cell cycle progression and DNA replication. Moreover, cells depleted of CONCR show severe defects in sister chromatid cohesion, suggesting an essential role for CONCR in cohesion establishment during cell division. CONCR interacts with and regulates the activity of DDX11, a DNA-dependent ATPase and helicase involved in DNA replication. These findings suggest a novel mechanism of action for CONCR in the modulation of DDX11 enzymatic activity, unveiling the direct involvement of a lncRNA in the establishment of sister chromatid cohesion. Characterization of the function of the long noncoding RNA CONCR. HCT116 p53-/- cells were left untreated (0h) or treated with the DNA damaging drug 5-FU for 4h and 12h.
Project description:Long noncoding RNAs (lncRNAs) have appeared to be involved in the most diverse cellular processes through multiple mechanisms. Here we describe a previously uncharacterized human lncRNA, CONCR (cohesion regulator noncoding RNA), transcriptionally activated by MYC, which is upregulated in multiple cancer types. The expression of CONCR is cell cycle-regulated, and it is required for cell cycle progression and DNA replication. Moreover, cells depleted of CONCR show severe defects in sister chromatid cohesion, suggesting an essential role for CONCR in cohesion establishment during cell division. CONCR interacts with and regulates the activity of DDX11, a DNA-dependent ATPase and helicase involved in DNA replication. These findings suggest a novel mechanism of action for CONCR in the modulation of DDX11 enzymatic activity, unveiling the direct involvement of a lncRNA in the establishment of sister chromatid cohesion.
Project description:Long noncoding RNAs (lncRNAs) have appeared to be involved in the most diverse cellular processes through multiple mechanisms. Here we describe a previously uncharacterized human lncRNA, CONCR (cohesion regulator noncoding RNA), transcriptionally activated by MYC, which is upregulated in multiple cancer types. The expression of CONCR is cell cycle-regulated, and it is required for cell cycle progression and DNA replication. Moreover, cells depleted of CONCR show severe defects in sister chromatid cohesion, suggesting an essential role for CONCR in cohesion establishment during cell division. CONCR interacts with and regulates the activity of DDX11, a DNA-dependent ATPase and helicase involved in DNA replication. These findings suggest a novel mechanism of action for CONCR in the modulation of DDX11 enzymatic activity, unveiling the direct involvement of a lncRNA in the establishment of sister chromatid cohesion.
Project description:Long noncoding RNAs (lncRNAs) have appeared to be involved in the most diverse cellular processes through multiple mechanisms. Here we describe a previously uncharacterized human lncRNA, CONCR (cohesion regulator noncoding RNA), transcriptionally activated by MYC, which is upregulated in multiple cancer types. The expression of CONCR is cell cycle-regulated, and it is required for cell cycle progression and DNA replication. Moreover, cells depleted of CONCR show severe defects in sister chromatid cohesion, suggesting an essential role for CONCR in cohesion establishment during cell division. CONCR interacts with and regulates the activity of DDX11, a DNA-dependent ATPase and helicase involved in DNA replication. These findings suggest a novel mechanism of action for CONCR in the modulation of DDX11 enzymatic activity, unveiling the direct involvement of a lncRNA in the establishment of sister chromatid cohesion.
Project description:Long noncoding RNAs (lncRNAs) have appeared to be involved in the most diverse cellular processes through multiple mechanisms. Here we describe a previously uncharacterized human lncRNA, CONCR (cohesion regulator noncoding RNA), transcriptionally activated by MYC, which is upregulated in multiple cancer types. The expression of CONCR is cell cycle-regulated, and it is required for cell cycle progression and DNA replication. Moreover, cells depleted of CONCR show severe defects in sister chromatid cohesion, suggesting an essential role for CONCR in cohesion establishment during cell division. CONCR interacts with and regulates the activity of DDX11, a DNA-dependent ATPase and helicase involved in DNA replication. These findings suggest a novel mechanism of action for CONCR in the modulation of DDX11 enzymatic activity, unveiling the direct involvement of a lncRNA in the establishment of sister chromatid cohesion. Characterization of the function of the long noncoding RNA CONCR. A549 were transfected with a control siRNA or with a combination of two siRNAs targeting CONCR. Three independent siRNA-mediated knockdowns (siRNA CONCR REP1, 2 and 3) and controls (siRNA Control REP1, 2 and 3) were used for the analysis.
Project description:Two identical sister copies of eukaryotic chromosomes are synthesised during S-phase. To facilitate their recognition as pairs for segregation in mitosis, sister chromatids are held together from their synthesis onwards by the chromosomal cohesin complex. It is thought that replication fork progression is coupled to establishment of sister chromatid cohesion, thus facilitating identification of replication products, but evidence for this has remained circumstantial. Here we show that three proteins required for sister chromatid cohesion, Eco1, Ctf4 and Ctf18 are found close to, and Ctf4 travels along chromosomes with replication forks. The ring-shaped cohesin complex is loaded onto chromosomes before S-phase in an ATP hydrolysis-dependent reaction. Cohesion establishment during DNA replication follows without further cohesin recruitment, and without need for cohesin to re-engage an ATP hydrolysis motif that is critical for its initial DNA binding. This provides evidence for cohesion establishment in the context of replication forks and imposes constraints on the mechanism involved. Keywords: ChIP on chip
Project description:Cohesion between sister chromatids depends on the chromosomal cohesin complex and allows the spindle apparatus in mitosis to recognize replicated chromosomes for segregation into daughter cells. Sister chromatid cohesion is established concomitant with DNA replication, and requires the essential Eco1 protein, a replication fork-associated acetyl transferase. The mechanism by which Eco1 establishes sister chromatid cohesion is not known. Here, we show that the cohesin subunit Smc3 is acetylated in an Eco1-dependent manner during S phase to establish sister chromatid cohesion. We isolated spontaneous suppressors of the thermosensitive eco1-1 allele in budding yeast, and identified the suppressor mutations from the hybridization pattern of genomic DNA on oligonucleotide tiling arrays. An acetylation mimicking mutation of a conserved lysine in Smc3 to asparagine (K113N) makes Eco1 dispensable for cell growth, indicating that Smc3 acetylation is Eco1’s only essential function. We identified a second set of eco1-1 suppressor mutations in the budding yeast ortholog of the cohesin regulator Wapl (Wpl1/Rad61). Wapl destabilizes cohesin on chromosomes, and Eco1-dependent Smc3 acetylation during S-phase might render cohesin resistant to Wapl. Our results clarify the role of Eco1 in the establishment of sister chromatid cohesion, and suggest that Eco1 modifies cohesin to stabilize an Eco1-independent cohesion establishment reaction.
Project description:The ring-shaped cohesin complex links sister chromatids until their timely segregation during mitosis. Cohesin is enriched at centromeres, where it provides the cohesive counter-force to bi-polar tension produced by the mitotic spindle. As a consequence of spindle tension, centromeric sequences transiently split in pre-anaphase cells, in some organisms up to several micrometeres. This ‘centromere breathing’ presents a paradox, how sister sequences separate where cohesin is most enriched. We now show that in the budding yeast S. cerevisiae, cohesin binding diminishes over centromeric sequences that split during breathing. We see no evidence for cohesin translocation to surrounding sequences, suggesting that cohesin is removed from centromeres during breathing. Two pools of cohesin can be distinguished. Cohesin loaded before DNA replication, that has established sister chromatid cohesion, disappears during breathing. In contrast, cohesin loaded after DNA replication is partly retained. As sister centromeres re-associate after transient separation, cohesin is re-loaded in a manner independent of the canonical cohesin loader Scc2/Scc4. Efficient centromere re-association requires the cohesion establishment factor Eco1, suggesting that re-establishment of sister chromatid cohesion contributes to the dynamic behaviour of centromeres in mitosis. These findings provide new insights into cohesin behaviour at centromeres. Keywords: ChIP-chip