Project description:The genome of Leuconostoc suionicum DSM 20241T (=ATCC 9135T = LMG 8159T = NCIMB 6992T) was completely sequenced and its fermentative metabolic pathways were reconstructed to investigate the fermentative properties and metabolites of strain DSM 20241T during fermentation. The genome of L. suionicum DSM 20241T consists of a circular chromosome (2026.8 Kb) and a circular plasmid (21.9 Kb) with 37.58% G + C content, encoding 997 proteins, 12 rRNAs, and 72 tRNAs. Analysis of the metabolic pathways of L. suionicum DSM 20241T revealed that strain DSM 20241T performs heterolactic acid fermentation and can metabolize diverse organic compounds including glucose, fructose, galactose, cellobiose, mannose, sucrose, trehalose, arbutin, salcin, xylose, arabinose and ribose.
Project description:Ruminiclostridium thermocellum DSM 1313 strain adhE*(EA) expression was studied along with ∆hydG and ∆hydG∆ech mutants strains deposited under GSE54082. All strains have been described in a study entitled Elimination of hydrogenase post-translational modification blocks H2 production and increases ethanol yield in Clostridium thermocellum. Biswas, et .al. Biotechnology for Biofuels 2015 8:20 Ruminiclostridium (Clostridium) thermocellum is a leading candidate organism for implementing a consolidated bioprocessing (CBP) strategy for biofuel production due to its native ability to rapidly consume cellulose and its existing ethanol production pathway. C. thermocellum converts cellulose and cellobiose to lactate, formate, acetate, H2, ethanol, amino acids, and other products. Elimination of the pathways leading to products such as H2 could redirect carbon flux towards ethanol production. Rather than delete each hydrogenase individually, we targeted a hydrogenase maturase gene (hydG), which is involved in converting the three [FeFe] hydrogenase apoenzymes into holoenzymes by assembling the active site. This functionally inactivated all three Fe-Fe hydrogenases simultaneously, as they were unable to make active enzymes. In the ∆hydG mutant, the [NiFe] hydrogenase-encoding ech was also deleted to obtain a mutant that functionally lacks all hydrogenase. The ethanol yield increased nearly 2-fold in ∆hydG∆ech compared to wild type, and H2 production was below the detection limit. Interestingly, ∆hydG and ∆hydG∆ech exhibited improved growth in the presence of acetate in the medium. Transcriptomic and proteomic analysis reveal that genes related to sulfate transport and metabolism were up-regulated in the presence of added acetate in ∆hydG, resulting in altered sulfur metabolism. Further genomic analysis of this strain revealed a mutation in the bi-functional alcohol/aldehyde dehydrogenase adhE gene, resulting in a strain with both NADH- and NADPH-dependent alcohol dehydrogenase activities, whereas the wild type strain can only utilize NADH. This is the exact same adhE mutation found in ethanol-tolerant C. thermocellum strain E50C, but ∆hydG∆ech is not more ethanol tolerant than the wild type. Targeting protein post-translational modification is a promising new approach to target multiple enzymes simultaneously for metabolic engineering. This GEO study pertains to expression profiles generated for C. thermocellum DSM 1313 strain adhE*(EA)
Project description:Candida lusitaniae is an emerging human opportunistic yeast, which can switch from yeast to pseudohyphae, and one of the rare Candida species capable of sexual reproduction. Its haploid genome and the genetic tools available make it a model of interest to study gene function. This study describes the consequences of DPP3 inactivation on cell morphology and mating, both altered in the dpp3Δ knock-out. Interestingly, reintroducing a wild-type copy of the DPP3 gene in the dpp3Δ mutant failed to restore the wild-type phenotypes. Proteomic analyses showed that about 150 proteins were statistically deregulated in the dpp3Δ mutant, and that most of them did not return to their wild-type level in the reconstituted DPP3 strain. The analysis of the segregation of the dpp3Δ mutation and the phenotypes in the progeny of a cross (between the dpp3Δ knock-out and a wild-type strain) showed that the phenotypes are not linked to dpp3Δ, but to a secondary mutation. Genome sequencing of the dpp3Δ mutant allowed us to identify this secondary mutation.