Project description:Background: The expression of microRNAs (miRNAs) is primarily regulated during their transcription. However, the transcriptional regulation of miRNA genes has not been studied extensively owing to the lack of sufficient information about the promoters and transcription start sites of most miRNAs. Results: In this study, we identified the transcription start sites of human primary miRNAs (pri-miRNAs) using DROSHA knockout cells. DROSHA knockout resulted in increased accumulation of pri-miRNAs and facilitated the precise mapping of their 5′ end nucleotides using the rapid amplification of cDNA ends (RACE) technique. By analyzing the promoter region encompassing the transcription start sites of miRNAs, we found that the unrelated miRNAs in their sequences have many common elements in their promoters for binding the same transcription factors. Moreover, by analyzing intronic miRNAs, we also obtained comprehensive evidence that miRNA-harboring introns are spliced more slowly than other introns. Conclusions: The precisely mapped transcription start sites of pri-miRNAs, and the list of transcription factors for pri-miRNAs regulation, will be valuable resources for future studies to understand the regulatory network of miRNAs.
Project description:Transcription initiation is a highly dynamic and tightly regulated process involving the coordinated action of transcription factors, chromatin remodelers, and RNA polymerase which determine where and when transcription begins. Accurately mapping and quantifying transcription start sites (TSSs) from nascently transcribed RNAs remains a key area of interest, as it provides critical insights into transcription dynamics. Here, we combined transient transcriptome sequencing with transcription start site sequencing (TT-TSS-seq) to accurately map and quantify transcription initiation sites from nascent transcripts. Since transient metabolic labelling yields low-input RNA, we optimized the TSS-seq protocol to enhance sensitivity and accuracy. Specifically, we refined enzymatic reactions for decapping and RNA ligation and incorporated 5' oligonucleotides including unique molecular identifiers (UMIs) and barcodes to enable accurate quantification and sample multiplexing. The TT-TSS-seq approach detected transcription initiation of unstable transcripts, such as enhancer RNAs. Moreover, we identified that a large fraction of genes use multiple transcription initiation sites, yet often produce only a single stable transcript. Overall, TT-TSS-seq provides precise mapping and quantification of transcription initiation sites, offering new insights into transcriptional dynamics and expanding the toolkit for studying gene regulation.