Project description:Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by progressive deterioration of cognitive function. Evidence suggests a role for epigenetic regulation, in particular the cytosine modifications 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC,) in AD. 5hmC is highly enriched in the nervous system and displays neurodevelopment and age-related changes. To determine the role of 5hmC in AD, we performed genome-wide analyses of 5hmC in DNA from prefrontal cortex of post-mortem AD as well as RNA-Seq to correlate changes in methylation status with transcriptional changes. We also utilized the existing AD fly model to further test the functional significance of these epigenetically altered loci. We identified 325 genes containing differentially hydroxymethylated loci (DhMLs) in both the discovery and replication datasets, and these are enriched for pathways involved in neuron projection development and neurogenesis. Of the 325 genes identified, 140 also showed changes in gene expression by RNA-Seq. Proteins encoded by genes identified in the current analysis form direct protein-protein interactions with AD-associated genes, expanding the network of genes implicated in AD. Furthermore, we identified AD-associated single nucleotide polymorphisms (SNPs) located within or near DhMLs, suggesting that these SNPs may identify regions of epigenetic gene regulation that play a role in AD pathogenesis. Finally using the existing AD fly model we showed that some of these genes could modulate the toxicity associated with AD. Our data implicate neuron projection development and neurogenesis pathways as potential targets in AD. These results indicate that incorporating epigenomic and transcriptomic data with GWAS data can expand the known network of genes involved in disease pathogenesis. Combination of epigenome profiling and Drosophila model enables us to identify the epigenetic modifiers of Alzheimer's disease. University of Kentucky Alzheimer's Disease Research Center (3 control, 3 Alzheimer's) and Emory University Alzheimer's Disease Research Center (2 control, 2 Alzheimer's)
Project description:Expression data from the neuron model of Alzheimer's disease (AD) with or without treatment of recombinant human mitochondrial transcriptional factor A (rhTFAM) protein
Project description:Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by progressive deterioration of cognitive function. Evidence suggests a role for epigenetic regulation, in particular the cytosine modifications 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC,) in AD. 5hmC is highly enriched in the nervous system and displays neurodevelopment and age-related changes. To determine the role of 5hmC in AD, we performed genome-wide analyses of 5hmC in DNA from prefrontal cortex of post-mortem AD as well as RNA-Seq to correlate changes in methylation status with transcriptional changes. We also utilized the existing AD fly model to further test the functional significance of these epigenetically altered loci. We identified 325 genes containing differentially hydroxymethylated loci (DhMLs) in both the discovery and replication datasets, and these are enriched for pathways involved in neuron projection development and neurogenesis. Of the 325 genes identified, 140 also showed changes in gene expression by RNA-Seq. Proteins encoded by genes identified in the current analysis form direct protein-protein interactions with AD-associated genes, expanding the network of genes implicated in AD. Furthermore, we identified AD-associated single nucleotide polymorphisms (SNPs) located within or near DhMLs, suggesting that these SNPs may identify regions of epigenetic gene regulation that play a role in AD pathogenesis. Finally using the existing AD fly model we showed that some of these genes could modulate the toxicity associated with AD. Our data implicate neuron projection development and neurogenesis pathways as potential targets in AD. These results indicate that incorporating epigenomic and transcriptomic data with GWAS data can expand the known network of genes involved in disease pathogenesis. Combination of epigenome profiling and Drosophila model enables us to identify the epigenetic modifiers of Alzheimer's disease.
Project description:We applied Next-Generation Sequencing (NGS) to miRNAs from blood samples of 48 AD (Alzheimer's Disease) patients and 22 unaffected controls, yielding a total of 140 unique mature miRNAs with significantly changed expression level. Of these, 82 were higher and 58 lower abundant in samples from AD patients. We selected a panel of 12 miRNAs for a qRT-PCR analysis on a larger cohort of 202 samples including not only AD patients and healthy controls but also patients with other CNS illnesses: Multiple Sclerosis, Parkinson's Disease, Major Depression, Bipolar Disorder, Schizophrenia, and Mild Cognitive Impairment, which is assumed to represent a transitional period before the development of AD. MiRNA target enrichment analysis of the selected 12 miRNAs indicated an involvement of miRNAs in nervous system development, neuron projection, neuron projection development, and neuron projection morphogenesis, respectively. Using this 12-miRNA signature we were able to differentiate between AD and controls with an accuracy of 93.3%, a specificity of 95.1%, and a sensitivity of 91.5%. The differentiation of AD from other neurological diseases was possible with accuracies between 73.8% and 77.8%. The differentiation of the other CNS disorders from controls yielded even higher accuracies. Examination of the miRNA profile in blood samples of 48 AD patients and 22 controls
Project description:The effect of C1q knockout on brain gene expression was examined in non-transgenic and TauP301S mice. Complement pathway has been shown to play an important role in neurodegenerative diseases, and in-house data show that C1QC KO protects against neurodegeneration in Alzheimer's disease (AD) model. TauP301S mice have neuroinflammation and neurodegeneration in the brain and is AD model. The most severe pathology of this disease model is in hippocampus.
Project description:Expression data from Alzheimer's disease (AD) model mouse and AD model mouse overexpressing human mitochondrial transcriptional factor A (hTFAM)
Project description:Transcriptional profiling of Homo sapiens inflammatory skin diseases (whole skin biospies): Psoriasis (Pso), vs Atopic Dermatitis (AD) vs Lichen planus (Li), vs Contact Eczema (KE), vs Healthy control (KO) In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation. In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation.