Project description:We constructed S. cerevisiae BY_DEH+ strain which is able to assimilate both 4-deoxy-L-erythro-5-hexoseulose uronate (DEH, a monouronic acid produced by digestion of alginate with exo-type alginate lyase) and mannitol from BY4742 strain and improved its ability to assimilate DEH through an adaptive evolution (Matsuoka et al. Sci. Rep. 2017, 7, 4206). To examine transcriptional responses of the yeast to DEH and mannitol, gene expressions of the evolved strain (BY_DEH++ strain) in DEH medium, mannitol medium, and glucose medum were analyzed. For revealing the mechanisms underlying the adaptive evolution, gene expressions of both BY_DEH+ strain and BY_DEH++ strain in both DEH medium and glucose medium were measured.
Project description:Genomic characterization of a polymicrobial infection associated with a disease outbreak in Pacific white shrimp (Litopenaeus vannamei) Genome sequencing and assembly
Project description:Alginate overproduction by P. aeruginosa, also known as mucoidy is associated with chronic endobronchial infections in cystic fibrosis (CF). Alginate biosynthesis in this bacterium is initiated by the extracytoplasmic function sigma factor (σ22, AlgU/T). In the wild type (wt) nonmucoid strains, such as PAO1, AlgU is sequestered by the anti-sigma factor MucA that inhibits alginate production. However, the degradation of MucA by activated intramembrane proteases AlgW and/or MucP can lead to the conversion from nonmucoid strains to mucoid. Previously we reported that the absence of the sensor kinase KinB in PAO1 causes the initiation of AlgW-dependent proteolysis of MucA resulting in alginate overproduction. In the kinB mutant this activation requires alternate sigma factor RpoN (σ54). To determine the RpoN-dependent KinB regulon, microarray and proteomic analyses were performed on a mucoid kinB mutant and an isogenic nonmucoid kinB rpoN double mutant. In the kinB mutant, RpoN controlled the expression of approximately 20% of the genome. Besides alginate biosynthesis and regulator genes such as AlgW, KinB, in concert with RpoN, also control a large number of genes including: those involved in carbohydrate metabolism, quorum sensing, iron regulation, rhamnolipid production, and motility. In an acute pneumonia murine infection model, mice exhibited better survival when challenged with the kinB mutant than wt PAO1. Together, these data strongly suggest that KinB controls virulence factors important for acute pneumonia and conversion to mucoidy. 6 Samples total. Three with kinB mutant and three kinB wild type.