Project description:Animals can regenerate complex organs, yet this frequently results in imprecise replicas of the original structure. In the crustacean Parhyale, we examine the fidelity of leg regeneration using cellular composition and cell molecular profiles. Single-nuclei sequencing shows that regenerated and uninjured legs are indistinguishable in terms of cell type composition and transcriptional profiles.
Project description:Here, we present new functional genomic resources for the amphipod crustacean Parhyale hawaiensis, facilitating the exploration of gene regulatory evolution using this emerging research organism. We use Omni-ATAC-Seq, an improved form of the Assay for Transposase-Accessible Chromatin coupled with next-generation sequencing (ATAC-Seq), to identify accessible chromatin genome-wide across a broad time course of Parhyale embryonic development. This time course encompasses many major morphological events, including segmentation, body regionalization, gut morphogenesis, and limb development. In addition, we use short- and long-read RNA-Seq to generate an improved Parhyale genome annotation, enabling deeper classification of identified regulatory elements. We leverage a variety of bioinformatic tools to discover differential accessibility, predict nucleosome positioning, infer transcription factor binding, cluster peaks based on accessibility dynamics, classify biological functions, and correlate gene expression with accessibility.