Project description:Single cell-based studies have revealed tremendous cellular heterogeneity in stem cell and progenitor compartments, suggesting continuous differentiation trajectories with intermixing of cells at various states of lineage commitment and notable degree of plasticity during organogenesis. The hepato-pancreato-biliary organ system relies on a small endoderm progenitor compartment that gives rise to a variety of different adult tissues, including liver, pancreas, gallbladder, and extra-hepatic bile ducts. Experimental manipulation of various developmental signals in the mouse embryo underscored important cellular plasticity in this embryonic territory. This is also reflected in the existence of human genetic syndromes as well as congenital or environmentally-caused human malformations featuring multiorgan phenotypes in liver, pancreas and gallbladder. Nevertheless, the precise lineage hierarchy and succession of events leading to the segregation of an endoderm progenitor compartment into hepatic, biliary, and pancreatic structures are not yet established. Here, we combine computational modelling approaches with genetic lineage tracing to assess the tissue dynamics accompanying the ontogeny of the hepato-pancreato-biliary organ system. We show that a multipotent progenitor domain persists at the border between liver and pancreas, even after pancreatic fate is specified, contributing to the formation of several organ derivatives, including the liver. Moreover, using single-cell RNA sequencing we define a specialized niche that possibly supports such extended cell fate plasticity.
Project description:The intestinal epithelium exhibits a rapid and efficient regenerative response to injury. Emerging evidence supports a model where plasticity of differentiating(ed) cells, particularly those in the secretory lineages, contributes to epithelial regeneration upon ablation of injury-sensitive stem cells. However, such facultative stem cell activity is rare within secretory populations. Here we ask whether specific functional properties predict facultative stem cell activity. We utilize in vivo labeling combined with ex vivo organoid formation assays to evaluate how cell age and autophagic state contribute to facultative stem cell activity within secretory lineages. Strikingly, we find that cell age (time elapsed since cell cycle exit) does not correlate with secretory cell plasticity. Instead, high autophagic activity predicts plasticity and resistance to DNA damaging injury independently of cell lineage. Our findings indicate that autophagic status prior to injury serves as a lineage-agnostic proxy for the prospective identification of facultative stem cells.
Project description:The intestinal epithelium exhibits a rapid and efficient regenerative response to injury. Emerging evidence supports a model where plasticity of differentiating(ed) cells, particularly those in the secretory lineages, contributes to epithelial regeneration upon ablation of injury-sensitive stem cells. However, such facultative stem cell activity is rare within secretory populations. Here we ask whether specific functional properties predict facultative stem cell activity. We utilize in vivo labeling combined with ex vivo organoid formation assays to evaluate how cell age and autophagic state contribute to facultative stem cell activity within secretory lineages. Strikingly, we find that cell age (time elapsed since cell cycle exit) does not correlate with secretory cell plasticity. Instead, high autophagic activity predicts plasticity and resistance to DNA damaging injury independently of cell lineage. Our findings indicate that autophagic status prior to injury serves as a lineage-agnostic proxy for the prospective identification of facultative stem cells.
Project description:The intestinal epithelium exhibits a rapid and efficient regenerative response to injury. Emerging evidence supports a model where plasticity of differentiating(ed) cells, particularly those in the secretory lineages, contributes to epithelial regeneration upon ablation of injury-sensitive stem cells. However, such facultative stem cell activity is rare within secretory populations. Here we ask whether specific functional properties predict facultative stem cell activity. We utilize in vivo labeling combined with ex vivo organoid formation assays to evaluate how cell age and autophagic state contribute to facultative stem cell activity within secretory lineages. Strikingly, we find that cell age (time elapsed since cell cycle exit) does not correlate with secretory cell plasticity. Instead, high autophagic activity predicts plasticity and resistance to DNA damaging injury independently of cell lineage. Our findings indicate that autophagic status prior to injury serves as a lineage-agnostic proxy for the prospective identification of facultative stem cells.
Project description:Emerging evidence suggests that priming intestinal stem cell (ISC) lineages towards secretory progenitor cells is beneficial for maintaining gut homeostasis against inflammatory bowel disease (IBD). However, the mechanism driving such biased lineage commitment remains elusive. Here we show that MG53, also named as TRIM72, plays and important role in maintaining intestinal epithelium integrity against various insults-induced IBD. Specifically, MG53 deficiency leads to exacerbated IBD manifestations caused by various injuries in mice, whereas MG53 overexpression in ISCs is sufficient to ameliorate intestinal damage.
Project description:We have determined that sustained expression of EBF suppresses alternate lineage genes independently of Pax5. Keywords: Transcription factor EBF restricts alternate lineage options and promotes B cell fate commitment independently of Pax5.