Project description:In this study we have looked at the transcriptome profile of both incompatible and compatible cowpea-RKN interaction for two different time points using the Affymetrix soybean GeneChip. This is the first study of this kind in cowpea-RKN interaction. This study provides a broad insight into the Rk-mediated resistance in cowpea and creates an excellent dataset of potential candidate genes involved in both nematode resistance and parasitism, which can be further tested for their role in this biological process using functional genomics approaches. our results have shown that the root-knot nematode resistant pathway is still partially suppressed at 9 days post inoculation in resistant cowpea root. There is indication that subtle variation of ROS concentration, induction of toxins and other defense related genes play a role in this unique resistance mechanism. Further functional analysis of these differentially expressed genes will help us to understand this intriguing plant-nematode interaction in a more precise manner.
Project description:In this study we have looked at the transcriptome profile of both incompatible and compatible cowpea-RKN interaction for two different time points using the Affymetrix soybean GeneChip. This is the first study of this kind in cowpea-RKN interaction. This study provides a broad insight into the Rk-mediated resistance in cowpea and creates an excellent dataset of potential candidate genes involved in both nematode resistance and parasitism, which can be further tested for their role in this biological process using functional genomics approaches. our results have shown that the root-knot nematode resistant pathway is still partially suppressed at 9 days post inoculation in resistant cowpea root. There is indication that subtle variation of ROS concentration, induction of toxins and other defense related genes play a role in this unique resistance mechanism. Further functional analysis of these differentially expressed genes will help us to understand this intriguing plant-nematode interaction in a more precise manner. Experiment Overall Design: Seeds of CB46 (resistant) and null-Rk (susceptible) cowpea genotypes were surface sterilized using 10% (v/v) bleach solution and were planted in growth pouches. Plants were grown under controlled environmental conditions of 26.7°C ± 0.5°C constant temperature and daily light/dark cycles of 16/8 hours. This temperature was used because it lies within the optimum temperature range of 26 â 28 °C for development and reproduction of M. incognita on cowpea in growth pouches. Each pouch was inoculated with 3000 J2 in 5 ml of deionized water, 12 days after planting (dap). Equal number of pouches was mock inoculated with 5 ml of deionized water to use as control. Nematode infected root tissue was excised using a sterile scalpel at 3 days post inoculation (dpi) and 9 dpi respectively under a magnifying glass and flash frozen immediately in liquid nitrogen. Approximately equal amount of root tissue was also excised and flash frozen from the control plants. The harvested tissue was stored in -80°C until RNA isolation. For 9 dpi samples 3 biological replicates were used for each treatment. So total number of soybean GeneChips used for 9dpi samples was 12. For 3 dpi samples two biological replicates were used for each treatment and a total of 8 GeneChips were used. Expression signals were first analyzed in Microarray Suite 5.0 software (MAS 5, Affymetrix Inc.) to determine the âpresentâ probe set list. The detection algorithm uses probe pair intensities to generate a detection p-value and assign a âpresentâ, âmarginalâ, or âabsentâ call. Each probe pair in a probe set has a potential vote in determining whether the measured transcript is or is not âpresentâ. The vote is described by the discrimination score (R). R is calculated for each probe pair and compared to a predefined threshold, Tau. Probe pairs with R higher than Tau vote âpresentâ and the voting result is summarized as a p-value. The greater the number of discrimination scores (R) that are above Tau, the smaller the p-value and the more likely the given transcript is truly present in the sample. Only probe sets with a âpresentâ call in all three replicates of at least one treatment was considered to be âexpressedâ.
Project description:Background. Cowpea, Vigna unguiculata L. Walp., is one of the most important food and forage legumes in the semi-arid tropics. While most cowpea accessions are susceptible to the root parasitic weed Striga gesnerioides, several cultivars have been identified that show race-specific resistance. Cowpea cultivar B301 contains the RSG3-301 gene for resistance to S. gesnerioides race SG3, but is susceptible to race SG4z. When challenged by SG3, roots of cultivar B301 develop a strong resistance response characterized by a hypersensitive reaction and cell death at the site of parasite attachment. In contrast, no visible response occurs in B301 roots parasitized by SG4z. Results. Gene expression in the roots of the cowpea cultivar B301 during compatible (susceptible) and incompatible (resistant) interactions with S. gesnerioides races SG4z and SG3, respectively, were investigated at 6 and 13 days post-inoculation (dpi), in the early and late stages of the resistance response using a Nimblegen custom design cowpea microarray. A total of 111 genes were differentially expressed in B301 roots at 6 dpi; this number increased to 2102 genes at 13 dpi. At 13 dpi, a total of 1944 genes were differentially expressed during compatible (susceptible) interactions of B301 with SG4z . Genes and pathways involved in signal transduction, programmed cell death and apoptosis, and defense response to biotic and abiotic stress were differentially expressed in the early resistance response; at the later time point, enrichment was primarily for defense-related gene expression, and genes encoding components of lignifications and secondary wall formation. In compatible interactions (B301 – SG4z), multiple defense pathways were repressed, including those involved in lignin biosynthesis and secondary cell wall modifications, while cellular transport processes for nitrogen and sulfur were increased. Conclusion. Distinct changes in global gene expression profiles occur in host roots following successful and unsuccessful attempted parasitism by Striga. Induction of specific defense related genes and pathways defines components of a unique resistance mechanism. Some genes and pathways up-regulated in the host resistance response to SG3 are repressed in the susceptible interactions, suggesting that the parasite is targeting specific components of the host’s defense. These results add to our understanding of plant-parasite interactions and the evolution of resistance to parasitic weeds.