Project description:Immortalized human breast cancer cell line, MDA-MB-231, was analyzed via RT-qPCR for transcript expression of selected cytokines and cytokine receptors associated with promotion of tumor vasculature and breast cancer metastasis
Project description:Aurora Kinase B and ZAK interaction model
Equivalent of the stochastic model used in "Network pharmacology model predicts combined Aurora B and ZAK inhibition in MDA-MB-231 breast cancer cells" by Tang et. al. 2018.
The only difference is cell division and partitioning of the components, which are available in the original model for SGNS2.
Project description:Purpose: Transcriptome profiling (RNA-seq) of a novel human Inflammatory Breast Cancer cell line A3250 in comparison to SUM149 and MDA-MB-231 Inflammatory Breast Cancer (IBC) is the most aggressive form of breast cancer with distinct clinical and histopathological features, but understanding of the unique aspects of IBC biology lags far behind that of other breast cancers. We describe a novel triple-negative IBC cell line, A3250, that recapitulates key features of human IBC in a mouse xenograft model.The purpose of this study was to compare differences in gene expression between A3250 IBC, MDA-MB-231 non-IBC and SUM149 IBC that does not present with typical clinical sympotms of IBC in a mouse model, with the goal of identifying unique molecular features for this unique type of breast cancer Results: RNA-Seq analysis identified expression profile characteristic for the novel A3250 IBC cell line, compared to SUM149 IBC and MDA-MB-231 non-IBC.
Project description:p63 ChIP-SEQ in a p63 expressing basal-subtype breast cancer cell line, MCFDCIS and in a p63 deficient claudin-low subtype breast cancer cell line, MDA-MB-231 p63 ChIP-SEQ on MCFDCIS and MDA-MB-231 cell lines
Project description:To identify typical enhancers and super-enhancers in the MDA-MB-231 triple-negative breast cancer cell line, we performed ChIP-seq using DNA isolated from untreated MDA-MB-231 cells using an H3K27ac antibody.
Project description:Membrane-derived extracellular vesicles, referred to as microvesicles (MVs), have been proposed to participate in several cancer diseases. In this study, MV fractions were isolated by differential ultracentrifugation from a metastatic breast cancer (BC) cell line MDA-MB-231 and a non-cancerous breast cell line MCF10A, then analyzed by nano-liquid chromatography coupled to tandem mass spectrometry. A total of 1,519 MV proteins were identified from both cell lines. The data obtained were compared to previously analyzed proteins from small extracellular vesicle (sEV), revealing 1,272 proteins present in both MVs and sEVs derived from the MDA-MB-231 cell line. Among the 89 proteins unique to MDA-MB-231 MVs, three enzymes: ornithine aminotransferase (OAT), transaldolase (TALDO1) and bleomycin hydrolase (BLMH) have been previously proposed as cancer therapy targets. These proteins were enzymatically validated in cells, sEVs and MVs derived from both cell lines. The specific activity of OAT and TALDO1 was significantly higher in MDA-MB-231-derived MVs than in MCF10A10A MVs. BLMH was highly expressed in MDA-MB-231-derived MVs, compared to MCF10A MVs. This study shows that MVs carry functional metabolic enzymes and provides a framework for future studies of their biological role in BC and potential in therapeutic applications.
Project description:The project profiled the expression patterns in hypoxia induced secretomes between MDA-MB-231 parental and MDA-MB-231 Bone Tropic (BT) breast cancer cell lines which have been previously generated by Massague and colleagues (Kang et al. Cancer Cell 2003).
Project description:p63 ChIP-SEQ in a p63 expressing basal-subtype breast cancer cell line, MCFDCIS and in a p63 deficient claudin-low subtype breast cancer cell line, MDA-MB-231