Project description:<p>Aquatic insects are well-adapted to freshwater environments, but metabolic mechanisms of such adaptations, particularly to primary environmental factors (e.g., hypoxia, water pressure, dark light and abundant microbes), are poorly known. Most firefly species (Coleoptera: Lampyridae) are terrestrial, but the larvae of a few species are aquatic. We generated 24 global metabolomic profiles of larvae and adults of <em>Aquatica leii</em> (freshwater) and <em>Lychnuris praetexta</em> (terrestrial) to identify freshwater adaptation-related metabolites (AARMs). We identified 110 differentially abundant metabolites (DAMs) in <em>A. leii</em> (adults vs aquatic larvae) and 183 DAMs in <em>L. praetexta</em> (adults vs terrestrial larvae). Furthermore, 100 DAMs specific to aquatic <em>A. leii</em> larvae were screened as AARMs via interspecific comparisons (<em>A. leii</em> vs <em>L. praetexta</em>), which were primarily involved in antioxidant activity, immune response, energy production and metabolism, and chitin biosynthesis. They were assigned to six categories/superclasses (e.g., lipids and lipid-like molecules, organic acids and derivatives, and organoheterocyclic compound). Finally, ten metabolic pathways shared between KEGG terms specific to aquatic fireflies and enriched by AARMs were screened as aquatic adaptation-related pathways (AARPs). These AARPs were primarily involved in energy metabolism, xenobiotic biodegradation, protection of oxidative/immune damage, oxidative stress response and sense function (e.g., glycine, serine and threonine metabolism, drug metabolism-cytochrome P450 and taste transduction), and certain aspects of morphology (e.g., steroid hormone biosynthesis). These results provide evidence suggesting that abundance changes in metabolomes contribute to freshwater adaptation of fireflies. The metabolites identified here may be vital targets for future work to determine the mechanism of freshwater adaptation in insects.</p>
Project description:Chemical modifications to the tails of histone proteins act as gene regulators that play a pivotal role in adaptive responses to environmental stress. Determining the short and long term kinetics of histone marks is essential for understanding their functions in adaptation. We used Caenorhabditis elegans as a model organism to study the histone modification kinetics in response to environmental stress, taking advantage of their ability to live in both terrestrial and aquatic environments. We investigated the multigenerational genome-wide dynamics of five histone marks (H3K4me3, H3K27me3, H4K20me1, H3K36me1, and H3K9me3) by maintaining P0 animals on terrestrial (agar plates), F1 in aquatic cultures, and F2 back on terrestrial environments. We determined the distributions of histone marks in the gene promoter regions and found that H4K20me1, H3K36me1, and H3K9me3 showed up to eleven-fold differences in density, whereas H3K4me3 and H3K27me3 remained highly constant during adaptation from terrestrial to aquatic environments. Furthermore, we predicted that up to five combinations of histone marks can co-occupy single gene promoters and confirmed the colocalization of these histone marks by structured illumination microscopy. The co-occupancy increases with environment changes and different co-occupancy patterns contribute to variances in gene expressions and thereby presents a supporting evidence for the histone code hypothesis.
Project description:The ecological significance of light perception in non-phototrophic bacteria remains largely elusive. In terrestrial environments, diurnal oscillations in light are often temporally coupled to other environmental changes, including increased temperature and evaporation. Here we report that light functions as an anticipatory cue that triggers protective adaptations to tolerate a future rapid loss of environmental water in leaf-associated Pseudomonas syringae pv. syringae (Pss) and other terrestrial pseudomonads. Global transcriptome analyses in Pss showed that light control occurs almost entirely through a bacteriophytochrome photoreceptor that senses red, far-red and blue wavelengths and influences 30% of the Pss genome. Bacteriophytochrome-mediated light control disproportionally upregulates water-stress adaptation functions and confers enhanced fitness when cells encounter light prior to water limitation. These data demonstrate that non-phototrophic bacteria can use light as a cue to mount an adaptive anticipatory response against a physiologically unrelated but ecologically coupled stress.