Project description:miR-125b-5p is a well known miRNA already describded in several forms of cancer. miR-125b-5p is expressed in adipose tissue, adipocytes as well as their precursor cells. We aim to invest the role of miR-125b-5p in white adipocytes conversion into brite adipocytes. To get an idea about putative targets of miR-125b-5p in adipocyte conversion, we transfected miR-125b-5p mimic in human Multipotent Adipose-Derived Stem (hMADS) cells, differenciated in white adipocytes. Gene expression profiling is performed 48h after hMADSC transfection. Two-condition experiment, hMADS cells at day 16 after conversion of white adipocytes into brite adipocytes, comparison of cells transfected with a mimic miR-125b-5p to cells transfected with a negative controle. Biological replicates: 4, indepently grown and harvested. On each array, one biological replicate of mimic miR-125b-5p transfected cells was directly compared to one biological replicate of mimic negative control transfected cells (serving as reference sample). All hybridizations were repeated with reversed dye assignment (dye-swap) as technical replicates.
Project description:miR-125b-5p is a well known miRNA already describded in several forms of cancer. miR-125b-5p is expressed in adipose tissue, adipocytes as well as their precursor cells. We aim to invest the role of miR-125b-5p in white adipocytes conversion into brite adipocytes. To get an idea about putative targets of miR-125b-5p in adipocyte conversion, we transfected miR-125b-5p mimic in human Multipotent Adipose-Derived Stem (hMADS) cells, differenciated in white adipocytes. Gene expression profiling is performed 48h after hMADSC transfection.
Project description:To investigate machanism of miR-423-5p regulating the angiogenic ability of bEnd.3 cells, we transfected miR-423-5p mimic to overexpress miR-423-5p in bEnd.3 cells. Then we performed high throughput sequencing of miR-423-5p mimic-transfected and control bEnd.3 cells to evaluate different gene expressions between miR-210-3p-overexpressing and control.
Project description:Transcriptional profiling of breast cancer cells comparing pre-control transfected cells with cells transfected with pre-miR-125b. We searched for miR-125b targets by systematic screening of mRNA profiling of pre-miR-125b transfected MCF-7 cells and MDA-MB-435 cells.
Project description:Patients with advanced colorectal cancer (CRC) are commonly treated with systemic combination therapy but suffer eventually from drug resistance. MicroRNAs (miRNAs) are suggested to play a role in treatment resistance of CRC. We studied whether restoring downregulated miR-195-5p and 497-5p sensitize CRC cells to currently used chemotherapeutics 5-fluorouracil, oxaliplatin and irinotecan. Sensitivity to 5-FU, oxaliplatin and irinotecan before and after transfection with miR-195-5p and miR-497-5p mimics was analyzed in CRC cell lines HCT116, RKO, DLD-1 and SW480. Mass spectrometry based proteomic analysis of transfected and wild-type cells was used to identify targets involved in sensitivity to chemotherapy. Proteomic analysis revealed 181 proteins with significantly altered expression after transfection with miR-195-5p mimic in HCT116 and RKO, including 118 downregulated and 63 upregulated proteins. After transfection with miR-497-5p mimic, 130 proteins were significantly downregulated and 102 were upregulated in HCT116 and RKO (P<0.05 and FC<-3 or FC>3). CHUK and LUZP1 were coinciding downregulated proteins in sensitized CRC cells after transfection with either mimic. Resistance mechanisms of these two proteins may be related to nuclear factor kappa-B signaling and G1 cell cycle arrest, respectively. Restoring miR-195-5p and miR-497-5p expression enhanced sensitivity to chemotherapy, mainly oxaliplatin, in CRC cells and could be a promising treatment strategy for patients with mCRC. Proteomics revealed potential targets of these miRNAs involved in sensitivity to chemotherapy.
Project description:To investigate the gene expresiion regulated by miR-125b and its isomiRs. We transfected H9C2 cells with respective mimics and performed gene expression profiling anlaysis using data from RNA-seq of mimic controls, miR-125b and its isomiRs mimics subjected to normoxia and hypoxia treatment.
Project description:This experiment is designed to investigate the impact of exosomal miR-145-5p on the functional pathway and molecules on RPTEC cells. Data-independent acquisition (DIA) proteomics was conducted in the RPTEC cells transfected with miR-145-5p mimic or scramble control.
Project description:Transcriptional profiling of breast cancer cells comparing pre-control transfected cells with cells transfected with pre-miR-125b. We searched for miR-125b targets by systematic screening of mRNA profiling of pre-miR-125b transfected MCF-7 cells and MDA-MB-435 cells. Two-condition experiment, pre-miR-125b Transfected vs. pre-control Transfected MCF-7 cells. One replicate per array.
Project description:We demonstrate that miR-125b, a key node in this microRNA regulatory network, is upregulated in gastric cancer (GC) and associated with poor overall survival through an integrated analysis of microRNA and mRNA profiling of GC revealed a mRNA-regulatory network.So we have employed whole genome microarray expression profiling as a discovery platform to compare the transcriptome profiling of human gastric cells (MKN-45) after 48 hours post-transfection of miR-125b mimic (50nM) and mimic control.Pathway analysis shows that the predicted targets of miR-125b are highly involved in apoptosis/program death pathway,and the robust apoptosis genes, BIK and CASP6 are validated as the directed targets of miR-125b.