Project description:Global transcriptional analysis of loblolly pine (Pinus taeda L.) is challenging due to limited molecular tools. PtGen2, a 26,496 feature cDNA microarray, was fabricated and used to assess drought-induced gene expression in loblolly pine propagule roots. Statistical analysis of differential expression and weighted gene correlation network analysis were used to identify drought-responsive genes and further characterize the molecular basis of drought tolerance in loblolly pine.
Project description:Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.).
Project description:Sirex noctilio F., a Eurasian horntail woodwasp recently introduced into North America, oviposits in pines and other conifers and in the process spreads a phytopathogenic fungus that serves as a food source for its larvae. During oviposition the woodwasp also deposits a mucus produced in its acid (venom) gland that alters pine defense responses and facilitates infection by the fungus. A 26,496-feature loblolly pine cDNA microarray was used to survey gene expression of pine tissue responding to S. noctilio venom. Six genes were selected for further assessment by qRT-PCR, including one that encoded an apparent PR-4 protein and another that encoded a thaumatin-like protein. Expression of both was strongly induced in response to venom, while expression of an apparent actin gene (ACT1) was stable in response to the venom. The pattern of gene response was similar in Pinus taeda L. and P. radiata D. Don, but the magnitude of response in P. radiata was significantly stronger for each of the induced genes. The magnitude of biomarker gene response to venom also varied according to genotype within these two species. The qRT-PCR assay was used to demonstrate that the primary bioactive component in S. noctilio venom is a polypeptide.
Project description:Sirex noctilio F., a Eurasian horntail woodwasp recently introduced into North America, oviposits in pines and other conifers and in the process spreads a phytopathogenic fungus that serves as a food source for its larvae. During oviposition the woodwasp also deposits a mucus produced in its acid (venom) gland that alters pine defense responses and facilitates infection by the fungus. A 26,496-feature loblolly pine cDNA microarray was used to survey gene expression of pine tissue responding to S. noctilio venom. Six genes were selected for further assessment by qRT-PCR, including one that encoded an apparent PR-4 protein and another that encoded a thaumatin-like protein. Expression of both was strongly induced in response to venom, while expression of an apparent actin gene (ACT1) was stable in response to the venom. The pattern of gene response was similar in Pinus taeda L. and P. radiata D. Don, but the magnitude of response in P. radiata was significantly stronger for each of the induced genes. The magnitude of biomarker gene response to venom also varied according to genotype within these two species. The qRT-PCR assay was used to demonstrate that the primary bioactive component in S. noctilio venom is a polypeptide. Reference design. Two condition experiment, two time points each compared to a common reference. Two biological replicates, two technical replicates, 12 slides total, duplicate/re-scanned images submitted for each slide.
Project description:Wood stiffness is the most important wood quality trait of forest trees for structural timber production. We investigated genes differentially transcribed in radiate pine trees with distinct wood stiffness using bulked segregant analysis (BSA) and cDNA microarrays. Transcript accumulation in earlywood (EW) and latewood (LW) of high (HS) and low stiffness (LS) trees in two progeny trials was compared.
Project description:Wood density is a foundamental quality trait for structural timber, bioenergy and pulp industries. We investigated genes differentially transcribed in radiate pine juvneile trees with distinct wood density using cDNA microarrays.
Project description:Seasonal wood development results in two distinct wood types: earlywood (EW) and latewood (LW), which is the major cause of wood qaulity variation. We investigate transcriptome reorganization during seasonal wood development in radiata pine using a newly developed 18k cDNA microarrays. Three sampling trees each at juvenile (5 yrs), transition (9 yrs) and mature (14 yrs) ages (based on the wood rings at breast height) were selected from a plantation forest of radiata pine at Bondo, NSW , Australia (35º 16' 44.04 S, 148º 26' 54.66 E). The sampling trees at juvenile and mature ages were grown within 50 m distance and under similar environment. Two sampling trees at rotation age (30 yrs) were chosen at Yarralumla, ACT, Australia (35° 18' 27'' S, 149° 7' 27.9'' E).