Project description:Intertidal zone organisms can experience transient freezing temperatures during winter low tides, but their extreme cold tolerance mechanisms are not known. Petrolisthes cinctipes is a temperate mid-high intertidal zone crab species that can experience wintertime habitat temperatures below the freezing point of seawater. We examined how cold tolerance changed during the initial phase of thermal acclimation to cold and warm temperatures, as well as the persistence of cold tolerance during long-term thermal acclimation. Thermal acclimation for as little as 6 hours at 8˚C enhanced crab tolerance during a 1h exposure to -2°C relative to crabs acclimated to 18˚C. Potential mechanisms for this enhanced tolerance were elucidated using cDNA microarrays to probe for differences in gene expression in cardiac tissue of warm and cold acclimated crabs during the first day of thermal acclimation. No changes in gene expression were detected until 12h of thermal acclimation. Genes strongly upregulated in warm acclimated crabs represented immune response and extracellular / intercellular processes, suggesting that warm acclimated crabs had a generalized stress response and may have been remodelling tissues or altering intercellular processes. Genes strongly upregulated in cold acclimated crabs included many that are involved in glucose production suggesting that cold acclimation involves increasing intracellular glucose as a cryoprotectant. Structural cytoskeletal proteins were also strongly represented among the genes upregulated in only cold acclimated crabs. There were no consistent changes in composition or the level of unsaturation of membrane phospholipid fatty acids with cold acclimation, which suggests that neither short- nor long-term changes in cold tolerance are mediated by changes in membrane fatty acid composition. Overall, our study demonstrates that initial changes in cold tolerance are likely not regulated by transcriptomic responses, but that gene expression-related changes in homeostasis begin within 12 hours – the length of a tidal cycle. all array data and raw images archived at the Porcelain Crab Array Database (http://array.sfsu.edu)
Project description:Crabs are a large subtaxon of the Arthropoda, the most diverse and species-rich metazoan group. Several outstanding questions remain regarding crab diversification, including about the genomic capacitors of physiological and morphological adaptation, that cannot be answered with available genomic resources. Physiologically and ecologically diverse Anomuran porcelain crabs offer a valuable model for investigating these questions and hence genomic resources of these crabs would be particularly useful. Here, we present the first two genome assemblies of congeneric and sympatric Anomuran porcelain crabs, Petrolisthes cinctipes and Petrolisthes manimaculis from different microhabitats. Pacific Biosciences high-fidelity sequencing led to genome assemblies of 1.5 and 0.9 Gb, with N50s of 706.7 and 218.9 Kb, respectively. Their assembly length difference can largely be attributed to the different levels of interspersed repeats in their assemblies: The larger genome of P. cinctipes has more repeats (1.12 Gb) than the smaller genome of P. manimaculis (0.54 Gb). For obtaining high-quality annotations of 44,543 and 40,315 protein-coding genes in P. cinctipes and P. manimaculis, respectively, we used RNA-seq as part of a larger annotation pipeline. Contrarily to the large-scale differences in repeat content, divergence levels between the two species as estimated from orthologous protein-coding genes are moderate. These two high-quality genome assemblies allow future studies to examine the role of environmental regulation of gene expression in the two focal species to better understand physiological response to climate change, and provide the foundation for studies in fine-scale genome evolution and diversification of crabs.
Project description:Intertidal zone organisms can experience transient freezing temperatures during winter low tides, but their extreme cold tolerance mechanisms are not known. Petrolisthes cinctipes is a temperate mid-high intertidal zone crab species that can experience wintertime habitat temperatures below the freezing point of seawater. We examined how cold tolerance changed during the initial phase of thermal acclimation to cold and warm temperatures, as well as the persistence of cold tolerance during long-term thermal acclimation. Thermal acclimation for as little as 6 hours at 8˚C enhanced crab tolerance during a 1h exposure to -2°C relative to crabs acclimated to 18˚C. Potential mechanisms for this enhanced tolerance were elucidated using cDNA microarrays to probe for differences in gene expression in cardiac tissue of warm and cold acclimated crabs during the first day of thermal acclimation. No changes in gene expression were detected until 12h of thermal acclimation. Genes strongly upregulated in warm acclimated crabs represented immune response and extracellular / intercellular processes, suggesting that warm acclimated crabs had a generalized stress response and may have been remodelling tissues or altering intercellular processes. Genes strongly upregulated in cold acclimated crabs included many that are involved in glucose production suggesting that cold acclimation involves increasing intracellular glucose as a cryoprotectant. Structural cytoskeletal proteins were also strongly represented among the genes upregulated in only cold acclimated crabs. There were no consistent changes in composition or the level of unsaturation of membrane phospholipid fatty acids with cold acclimation, which suggests that neither short- nor long-term changes in cold tolerance are mediated by changes in membrane fatty acid composition. Overall, our study demonstrates that initial changes in cold tolerance are likely not regulated by transcriptomic responses, but that gene expression-related changes in homeostasis begin within 12 hours – the length of a tidal cycle. all array data and raw images archived at the Porcelain Crab Array Database (http://array.sfsu.edu) n=264 specimens were divided into warm (18°C, n=96), cold (8°C, n=96), and control (13°C, n=72) acclimation groups. Crabs were sampled from the 13°C group at 0 h (the start of the experiment) and 24 h, the termination of the experiment. Crabs were sampled from the warm and cold acclimation groups at 6, 12, 18, and 24 hours following the start of thermal acclimation. At each time point, heart tissue from n=16 crabs from each group was dissected, flash frozen and stored at −80°C. A pooled total aRNA sample was prepared for each group by mixing equal quantities of total RNA from n=5 individuals in each group in order to have the same amount of biological diversity within each pooled RNA sample. For microarray hybridizations we used n=25 slides in an incomplete loop design where each sample was hybridized n=5 times, 2-3 times labelled with each Cy dye