Project description:To gain insight into the role of Runx3 in TrkC neurons we performed RNA-seq on E11.5 TrkC neurons isolated from cervical ganglia of Runx3-P2+/- and Runx3-P2-/- mice
Project description:We isolated E11.5 TrkC neurons and profiled chromatin accessibility (ATAC), Runx3, Brn3a, Islet1 binding and Histone H3 acetylated on lysine 27 (H3K27Ac) during early development of DRG TrkC neurons by Cut&Run
Project description:We isolated E12.5 TrkC neurons and profiled Runx3, Brn3a binding and Histone H3 acetylated on lysine 27 (H3K27Ac) during early development of DRG TrkC neurons by Cut&Run
Project description:Cellular binary fate decisions require the progeny to silence genes associated with the alternative fate. The major subsets of alpha:beta T cells have been extensively studied as a model system for fate decisions. While the transcription factor RUNX3 is required for the initiation of Cd4 silencing in CD8 T cell progenitors, it is not required to maintain the silencing of Cd4 and other helper T lineage genes. The other runt domain containing protein, RUNX1, silences Cd4 in an earlier T cell progenitor, but this silencing is reversed whereas the gene silencing after RUNX3 expression is not reverse. Therefore, we hypothesized that RUNX3 and not RUNX1 recruits other factors that maintains the silencing of helper T lineage genes in CD8 T cells. To this end, we performed a proteomics screen of RUNX1 and RUNX3 to determine candidate silencing factors.
Project description:Histones were isolated from brown adipose tissue and liver from mice housed at 28, 22, or 8 C. Quantitative top- or middle-down approaches were used to quantitate histone H4 and H3.2 proteoforms. See published article for complimentary RNA-seq and RRBS datasets.
Project description:We use comprehensive and unsupervised transcriptome analyses to provide molecular classifications of sensory neurons in the mouse geniculate ganglion. 96 neurons were isolated on a C1 Fluodigm chip, underwent RNA-Seq, and iteratively clustered into sub-classes.
Project description:RNAseq data indicate that in the human brain, most neurons co-express the brain-derived neurotrophic factor (BDNF) receptor TrkB and the Neurotrophin-3 (NT3) receptor TrkC. Because NT3 can also activate TrkB and TrkB is expressed at higher levels compared with TrkC, it has been difficult thus far to explore TrkC-mediated signaling. To this end, neurons were generated from human embryonic stem cells lacking the BDNF receptor TrkB using CRISPR/Cas9. These neurons were found to respond to very low concentrations of NT3, lower than the concentrations of BDNF needed to activate TrkB. In order to compare the transcriptional changes following treatment with NT3 RNA-seq analysis was performed and the results compared with those previously obtained following treatment of wild-type neurons with BDNF Merkouris et al. PMID: 29987039. The results indicate that downstream of TrkC activation, most of the changes in gene expression are similar to those seen after TrkB activation. The results also show that exposure to sub-saturating concentrations of either BDNF or NT3 does not cause receptor downregulation as seen with saturating ligand concentrations and that the receptors can be re-activated.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility.