Project description:Background: Cell free DNA (cfDNA) in plasma has received increasing attention and has been studied in a broad range of clinical conditions implicating inflammation, cancer, and aging. However, few studies have focused on mitochondrial DNA (mtDNA) in the cell free form. This study characterized the size distribution and sequence characteristics of plasma cell free mtDNA (cf mtDNA) in humans.Methods and Results: We optimized DNA isolation and next-generation sequencing library preparation protocols to better retain short DNA fragments from plasma, and applied these optimized methods to plasma samples from patients with sepsis. After massive parallel sequencing, we verified that our methods can retain substantially shorter DNA fragments than the standard isolation method, resulting in an average of 11.5 fold increase in short DNA fragments yield (DNA < 100bp). We report that cf mtDNA in plasma is highly enriched in short-size cfDNA (30 ~ 60 bp), which is much shorter than the value previously reported (~140 bp). Motivated by this unique size distribution, we size-selected short cfDNA fragments from the sequencing library, which further increased the mtDNA recovery rate by an average of 10.4 fold. Using this approach we detected mixtures of different mtDNA sequences, termed heteroplasmy, in plasma from 3 patients. In one patient who previously received bone marrow transplantation, different minor allele frequencies were observed between plasma and white blood cells (WBC) at heteroplasmic mtDNA sites, consistent with mixed-tissue origin for plasma DNA.Conclusion: mtDNA in plasma exists as very short fragments that exhibit mtDNA heteroplasmy distribution differences from that found in a single organ/tissue. This study is the first report of genome wide identification of mtDNA heteroplasmy in human plasma. Our optimized method can be used to investigate the potential utility of cf mtDNA fragments and heteroplasmy as biomarkers in various diseases.
Project description:Single-nucleus RNA sequencing (snRNA-seq) was used to profile the transcriptome of 16,015 nuclei in human adult testis. This dataset includes five samples from two different individuals. This dataset is part of a larger evolutionary study of adult testis at the single-nucleus level (97,521 single-nuclei in total) across mammals including 10 representatives of the three main mammalian lineages: human, chimpanzee, bonobo, gorilla, gibbon, rhesus macaque, marmoset, mouse (placental mammals); grey short-tailed opossum (marsupials); and platypus (egg-laying monotremes). Corresponding data were generated for a bird (red junglefowl, the progenitor of domestic chicken), to be used as an evolutionary outgroup.
Project description:Mitochondrial heteroplasmy, the presence of more than one mtDNA variant in a cell or individual is not as uncommon as previously thought. It is mostly due to the high mutation rate of the mtDNA and limited repair mechanisms present in the mitochondrion. The phenomenon has been studied mostly in human samples and in medical contexts. Heteroplasmy has also been researched in other species in fields such as forensics or genetic foot printing, but these studies usually focused on contained families within closely related species. Here we describe a large cross-species evaluation of heteroplasmy in mammals. We employed a novel approach to detect mitochondrial heteroplasmy in both novel and previously reported ChIP-sequencing datasets, which include concomitant mitochondrial DNA sequenced in the experiment. Here, we report novel ChIP-seq experiments for H3K4me1 and CEBPA across mammals, as well as some H3K4me3, H3K27ac and total histone H3 experiments. Most of the reported CEBPA experiments are good quality pull-downs, however the quality of many of the other experiments reported here has not been interrogated in detail. Whereas this does not affect the investigation of mitochondrial DNA pollution for the purposes of this study, both H3K4me1 and total histone H3 ChIP-seq datasets were often sequenced to relatively low depth and showed low ChIP enrichment compared to the other antibodies.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:SPO11-promoted DNA double-strand breaks (DSBs) formation is a crucial step for meiotic recombination, and it is indispensable to detect the broken DNA ends accurately for dissecting the molecular mechanisms behind. Here, we report a novel technique, named DEtail-seq (DNA End tailing followed by sequencing), that can directly and quantitatively capture the meiotic DSB 3’ overhang hotspots at single-nucleotide resolution.
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs.
Project description:As the evolution of miRNA genes has been found to be one of the important factors in formation of the modern type of man, we performed a comparative analysis of the evolution of miRNA genes in two archaic hominines, Homo sapiens neanderthalensis and Homo sapiens denisova, and elucidated the expression of their target mRNAs in bain.A comparative analysis of the genomes of primates, including species in the genus Homo, identified a group of miRNA genes having fixed substitutions with important implications for the evolution of Homo sapiens neanderthalensis and Homo sapiens denisova. The mRNAs targeted by miRNAs with mutations specific for Homo sapiens denisova exhibited enhanced expression during postnatal brain development in modern humans. By contrast, the expression of mRNAs targeted by miRNAs bearing variations specific for Homo sapiens neanderthalensis was shown to be enhanced in prenatal brain development.Our results highlight the importance of changes in miRNA gene sequences in the course of Homo sapiens denisova and Homo sapiens neanderthalensis evolution. The genetic alterations of miRNAs regulating the spatiotemporal expression of multiple genes in the prenatal and postnatal brain may contribute to the progressive evolution of brain function, which is consistent with the observations of fine technical and typological properties of tools and decorative items reported from archaeological Denisovan sites. The data also suggest that differential spatial-temporal regulation of gene products promoted by the subspecies-specific mutations in the miRNA genes might have occurred in the brains of Homo sapiens denisova and Homo sapiens neanderthalensis, potentially contributing to the cultural differences between these two archaic hominines.