Project description:Ribosome profiling study of dom34 and hbs1 knockout strains using short (16-nt) and long (28-nt) monosome-protected footprints and disome-protected footprints
Project description:Fully assembled ribosomes exist in two populations: polysomes and monosomes. While the former has been studied extensively, to what extent translation occurs on monosomes and its importance for overall translational output remains controversial. Here, we used ribosome profiling to examine the translational status of 80S monosomes in Saccharomyces cerevisiae. We found that the vast majority of 80S monosomes are elongating, not initiating. Further, most mRNAs exhibit some degree of monosome occupancy, with monosomes predominating on nonsense-mediated decay (NMD) targets, upstream open reading frames (uORFs), canonical ORFs shorter than ~590 nucleotides and ORFs for which the total time required to complete elongation is substantially shorter than that required for initiation. Importantly, mRNAs encoding low-abundance regulatory proteins tend to be enriched in the monosome fraction. Our data highlight the importance of monosomes for the translation of highly regulated mRNAs. We examined the translational status of single 80S ribosomes using ribosome profiling, and compared these monosome footprints to both polysome ribosome footprints and general ribosome profiling. RNASeq libraries were also prepared from the overall sample input.
Project description:Ribosomes that stall before completing peptide synthesis must be recycled and returned to the cytoplasmic pool. The protein Dom34 and cofactors Hbs1 and Rli1 can dissociate stalled ribosomes in vitro, but the identity of targets in the cell is unknown. Here we use ribosome profiling methodology to reveal a high- resolution molecular characterization of Dom34 function in vivo. We show that Dom34 removes stalled ribosomes from mRNAs that are truncated but, in contrast, does not generally dissociate ribosomes on coding sequences known to trigger stalling, such as polyproline. We also show that Dom34 targets arrested ribosomes near the ends of 3 ? UTRs. These ribosomes appear to gain access to the 3 ? UTR via a mechanism that does not require decoding of the mRNA. These results suggest that Dom34 carries out the important task of rescuing ribosomes found in noncoding regions. 25 samples are included in the study (2 mRNA-Seq samples and 23 ribosome footprint profiling samples). These include wild-type and dom34 or hbs1 knockout strains that were created in a variety of genetic backgrounds, treated with various agents in cell culture (e.g. diamide, 3-AT, or glucose starvation), treated differently during cell lysis (use of cycloheximide vs. other ribosome-stabilizing agents), or prepared in different ways after cell lysis (e.g. retention of short vs. long monosome-protected footprints or disome footprints).
Project description:Characterization of the riboproteome composition in quiescent cells and post-translational reactivation. To characterize ribosome heterogeneity during the exit from quiescence, the protein composition of ribosomal particles from stationary phase and nutrient-stimulated cells was assessed. A label-free quantitative mass spectrometry strategy was taken to compare quiescent yeast cells with cells that had been nutrient stimulated for 30 and 60 min. To this end, crude extracts from these cells were subjected to sucrose gradient centrifugation and three fractions free (F); monosome (M=80S + 60S + 40S) and polysome (P) were analyzed by nano-HPLC-MS/MS. A total of 528 proteins were identified.
Project description:During translation elongation, the ribosome ratchets along its mRNA template, incorporating each new amino acid and translocating from one codon to the next. The elongation cycle requires dramatic structural rearrangements of the ribosome. We show here that deep sequencing of ribosome-protected mRNA fragments reveals not only the position of each ribosome but also, unexpectedly, its particular stage of the elongation cycle. Sequencing reveals two distinct populations of ribosome footprints, 28-30 nucleotides and 20-22 nucleotides long, representing translating ribosomes in distinct states, differentially stabilized by specific elongation inhibitors. We find that the balance of small and large footprints varies by codon and is correlated with translation speed. The ability to visualize conformational changes in the ribosome during elongation, at single-codon resolution, provides a new way to study the detailed kinetics of translation and a new probe with which to identify the factors that affect each step in the elongation cycle. Ribosome profiling, or sequencing of ribosome-protected mRNA fragments, in yeast. We assay ribosome footprint sizes and positions in three conditions: untreated yeast (3 replicates) and yeast treated with translation inhibitors cycloheximide (2 replicates) and anisomycin (2 biological replicates, one technical replicate). We also treat yeast with 3-aminotriazole to measure the effect of limited histidine tRNAs on ribosome footprint size and distribution (two treatment durations).