Project description:We investigated the function of the SNX/H-type regulator of G-protein signaling (RGS) protein RGS4 and found alterations in enzyme regulation, stress response, siderophore production and metabolism of several carbon sources in light and darkness
Project description:We investigated the function of the G-protein coupled receptor 72004 in Trichoderma reesei and found that it is involved in methionine response and gene expression in light and darkness
Project description:Investigation of whole genome gene expression level changes in response to different light conditions of the T. reesei QM9414 parental strain and the deletion strains delta-phlp1, delta-gnb1 and delta gng1, cultivated on 1 % microcrystalline cellulose. The mutants analyzed in this study are further described in Tisch et al. 2011: Carbohydrate degradation is significantly regulated by light and the phosducin like protein PhLP1 in Trichoderma reesei (Hypocrea jecorina). We used two biological replicates of four T. reesei strains (QM9414, delta-phlp1, delta-gnb1 and delta-gng1), cultivated in constant light (LL, 1800 lux) or constant darkness (DD) on microcrystalline cellulose.
Project description:We investigated the function of the transcription factor STE12 and found an involvement in gene expression and growth in light and darkness
Project description:Investigation of whole genome gene expression level changes in response to different light conditions of the T. reesei QM9414 deletion strains delta-blr1, delta-blr2 and delta env1 cultivated on 1% microcrystalline cellulose. Perception and proper interpretation of environmental signals is crucial for survival in any natural habitat. Although the biotechnological workhorse Trichoderma reesei (Hypocrea jecorina) is predominantly known for its capability of efficient plant cell wall degradation, recent studies show that it has not lost its evolutionary heritage. Transmission of nutrient signals via the heterotrimeric G protein pathway has been shown to be influenced by light. We show that this interconnection is mainly established by the light regulatory protein ENV1 and the phosducin-like protein PhLP1 via mutual transcriptional regulation and influence on GNB1 (G protein beta subunit) function. ENV1 thereby exerts a more severe effect on gene transcription than BLR1 or BLR2. Lack of either one of the photoreceptors or PhLP1, GNB1 or GNG1 leads to a partial shutdown of processes upregulated in light, indicating that heterotrimeric G protein signalling exerts its major function in light and is a target of the light response machinery. Consequently, signals transmitted via the G protein pathway are of different relevance in light and darkness. Investigation of regulation of glycoside hydrolases as one of the major output pathways of this mechanism revealed that 79% of all genes belonging to this group, representing all GH-families available in T. reesei, are potentially responsive to light. We conclude that ENV1 is a key factor in connecting nutrient signalling with light response and establishes a signalling output pathway independent of BLR1 and BLR2. We used two biological replicates of three T. reesei strains (delta-blr1, delta-blr2 and delta-env1), cultivated in constant light (LL, 1800 lux) or constant darkness (DD) on microcrystalline cellulose. The strains used in this study were cultivated, hybridized and analyzed together with strains and samples from GSE27581; the corresponding wild-type strain QM9414 samples have accession numbers GSM683732, GSM683733, GSM683734 and GSM683735.
Project description:The filamentous fungus Trichoderma reesei is a saprophyte involved with polysaccharides cell wall depolymerization, being the most important industrial source of cellulases, which have been used for bioethanol production. The regulation of cellulase expression is controlled at the transcriptional level and in a carbon source-dependent manner. However, the signaling pathways and mechanisms involved in regulating the expression of these enzymes in T. reesei are still poorly understood. In this study, we demonstrate through transcriptional analysis by RNA-Seq the main changes in gene expression that occur in functional mutants for two genes of the MAPK, tmk1 and tmk2. The results obtained allowed us to identify that these proteins in T. reesei regulate independent processes, but sometimes might regulate the same process through different mechanisms of action, being responsible for modulating gene expression in this organism. Regarding to Δtmk2 strain, it was demonstrated that growth in sugarcane bagasse and glucose modulates the expression of genes involved with chromatin remodeling, metabolism of carbohydrates and cell signaling genes such as GPCR, calcium signaling and phospholipases. On the other hand, deletion of MAPK TMK1 promotes more discrete changes in the transcriptional profile and the main changes are related to the decrease in the expression of the major genes for cellulases and xylanases, repressing the expression of transporters belonging to the MFS family, transporters of amino acids and ions such as Ca2+ and Mg2+. Our results revealed that the MAPK signaling pathway in T. reesei regulates many important processes that allow the fungus to promote the recognition, transport and metabolism of different carbon sources during the process of cell wall degradation. Therefore, the clustering of these data will contribute to the construction of a global model for the events that occur during the degradation of lignocellulose in T. reesei, which will lead to the development of more efficient strains in the plant biomass degradation.
Project description:Investigation of whole genome gene expression level changes in response to different light conditions of the T. reesei QM9414 deletion strains delta-blr1, delta-blr2 and delta env1 cultivated on 1% microcrystalline cellulose. Perception and proper interpretation of environmental signals is crucial for survival in any natural habitat. Although the biotechnological workhorse Trichoderma reesei (Hypocrea jecorina) is predominantly known for its capability of efficient plant cell wall degradation, recent studies show that it has not lost its evolutionary heritage. Transmission of nutrient signals via the heterotrimeric G protein pathway has been shown to be influenced by light. We show that this interconnection is mainly established by the light regulatory protein ENV1 and the phosducin-like protein PhLP1 via mutual transcriptional regulation and influence on GNB1 (G protein beta subunit) function. ENV1 thereby exerts a more severe effect on gene transcription than BLR1 or BLR2. Lack of either one of the photoreceptors or PhLP1, GNB1 or GNG1 leads to a partial shutdown of processes upregulated in light, indicating that heterotrimeric G protein signalling exerts its major function in light and is a target of the light response machinery. Consequently, signals transmitted via the G protein pathway are of different relevance in light and darkness. Investigation of regulation of glycoside hydrolases as one of the major output pathways of this mechanism revealed that 79% of all genes belonging to this group, representing all GH-families available in T. reesei, are potentially responsive to light. We conclude that ENV1 is a key factor in connecting nutrient signalling with light response and establishes a signalling output pathway independent of BLR1 and BLR2.