Project description:Huntington’s disease (HD) is an inherited neurodegenerative disorder of which skeletal muscle atrophy is a common feature, and multiple lines of evidence support a muscle-based pathophysiology in HD mouse models. Inhibition of myostatin signaling increases muscle mass, and therapeutic approaches based on this are in clinical development. We have used a soluble ActRIIB decoy receptor (ACVR2B/Fc) to test the effects of myostatin/activin A inhibition in the R6/2 mouse model of HD. Transcriptional profiling of muscle in treated and untreated wild-type and R6/2 mice was performed to analyze the effect of the ActRIIB decoy on genes and pathways involved in maintaining normal muscle physiology as well as those dysregulated due to the mutant HTT gene mutation.
Project description:Skeletal muscle, the most abundant body’s tissue, plays vital roles in locomotion and metabolism. Myostatin is a negative regulator of skeletal muscle mass. In addition to increase muscle mass, Myostatin inhibition impacts on muscle contractility and energy metabolism. To decipher the mechanisms of action of the Myostatin inhibitors, we used proteomic and transcriptomic approaches to investigate the changes induced in skeletal muscles of transgenic mice overexpressing Follistatin, a physiological Myostatin inhibitor. Our proteomic workflow included a fractionation step to identify weakly expressed proteins and a comparison of fast versus slow muscles. Functional annotation of altered proteins supports the phenotypic changes induced by Myostatin inhibition, including modifications in energy metabolism, fiber type, insulin and calcium signaling, as well as membrane repair and regeneration. Less than 10% of the differentially expressed proteins were found to be also regulated at the mRNA level but the Biological Process annotation and the KEGG pathways analysis of transcriptomic results showed a great concordance with the proteomic data. Thus, this study describes the most extensive omics analysis of muscle overexpressing Follistatin, providing molecular-level insights to explain the observed muscle phenotypic changes
Project description:Myostatin (GDF8) is a member of the TGF-beta family of proteins which is predominantly expressed in skeletal muscle and acts as a negative regulator of muscle mass. Inhibition of myostatin leads to muscle hypertrophy and has been shown to mitigate insulin resistance in mouse models of type 2 diabetes, although the mechanisms underlying this effect are unclear. We found that myostatin inhibition by AAV-mediated overexpression of the myostatin propeptide improves skeletal muscle insulin sensitivity in mice made insulin-resistant by high fat diet feeding. To gain insight into potential gene expression changes responsible for this effect, we performed microarray analysis on skeletal muscle samples from high fat diet-fed mice with and without myostatin inhibition.
Project description:Inhibition of myostatin signaling induces strong skeletal muscle growth making it an attractive target to treat muscle wasting and sarcopenia. However, the biological function of myostatin in the heart is barely understood. We demonstrate that conditional inactivation of myostatin in the adult murine heart leads to cardiac hypertrophy, heart failure and increased lethality. To induce cardiomyocyte specific loss of myostatin a conditionally active Mstn^fl/fl allele was generated by insertion of loxP elements upstream and downstream of exons 1 and 2 of the mouse myostatin gene. The selection cassette was removed in vivo by flp-recombination. To inactivate myostatin, mice were mated to alphaMyHC-MCM mice (Sohal, DS, et al. (2001) Circulation Research 89, 20-25). Cre-recombination was achieved by intraperitoneal administration of Tamoxifen (40 mg/kg) for 5 consecutive days. The respective control alphaMyHC-MCM animals were equally treated.
Project description:More than 2,000 genes appear to be upregulated or downregulated in skeletal muscle of mice with constitutive knockout of myostatin (Steelman et al., FASEB J 20:580-2, 2006). This study was done to determine whether inhibition of myostatin activity in mature mice has similar effects on the pattern of gene expression. Keywords: Differential expression in treated and control mice
Project description:Despite over 3,000 articles published on dystrophin in the last 15 years, the reasons underlying the progression of the human disease, differential muscle involvement, and disparate phenotypes in different species are not understood. The present experiment employed a screen of 12,488 mRNAs in 16-wk-old mouse mdx muscle at a time when the skeletal muscle is avoiding severe dystrophic pathophysiology, despite the absence of a functional dystrophin protein. A number of transcripts whose levels differed between the mdx and human Duchenne muscular dystrophy were noted. A fourfold decrease in myostatin mRNA in the mdx muscle was noted. Differential upregulation of actin-related protein 2/3 (subunit 4), beta-thymosin, calponin, mast cell chymase, and guanidinoacetate methyltransferase mRNA in the more benign mdx was also observed. Transcripts for oxidative and glycolytic enzymes in mdx muscle were not downregulated. These discrepancies could provide candidates for salvage pathways that maintain skeletal muscle integrity in the absence of a functional dystrophin protein in mdx skeletal muscle.
Project description:Myostatin is a negative regulator of muscle growth and metabolism and its inhibition in mice improves insulin sensitivity, increases glucose uptake into skeletal muscle, and decreases total body fat. A recently described mammalian protein called Mss51 is significantly downregulated with myostatin inhibition. In vitro disruption of Mss51 results in increased levels of ATP, β-oxidation, glycolysis and oxidative phosphorylation. To determine the in vivo biological function of Mss51 in mice, we disrupted the Mss51 gene by CRISPR/Cas9 and found that Mss51 KO mice have normal muscle weights and fiber-type distribution but reduced fat pads. Myofibers isolated from Mss51 KO mice showed an increased oxygen consumption rate compared to WT controls, indicating an accelerated rate of skeletal muscle metabolism. The expression of genes related to oxidative phosphorylation and fatty acid β-oxidation were enhanced in skeletal muscle of Mss51 KO mice compared to that of WT mice. We found that mice lacking Mss51 and challenged with a high fat diet were resistant to diet-induced weight gain, had increased whole-body glucose turnover and glycolysis rate, and increased systemic insulin sensitivity and fatty acid β-oxidation. These findings demonstrate that Mss51 modulates skeletal muscle mitochondrial respiration and regulates whole-body glucose and fatty acid metabolism, making it a potential target for obesity and diabetes.
Project description:Cancer cachexia is a prevalent and often fatal wasting condition that cannot be fully reversed with nutritional interventions. Muscle atrophy is a central component of the syndrome, but the mechanisms whereby cancer leads to skeletal muscle atrophy are not well understood. We performed single nucleus multi-omics on skeletal muscles from a mouse model of cancer cachexia and profiled the molecular changes in cachexic muscle. Our results revealed the activation of a denervation-induced gene program that upregulates the transcription factor myogenin. Further studies showed that a myogenin-myostatin pathway promotes muscle atrophy in response to cancer cachexia. shRNA inhibition of myogenin or inhibition of myostatin through overexpression of its endogenous inhibitor follistatin prevented cancer cachexia-induced muscle atrophy in mice. Our findings uncover a molecular basis of cancer cachexia-induced muscle atrophy and highlight potential therapeutic targets for this disorder.