Project description:The inner ear utilizes sensory hair cells as mechano-electric transducers for sensing sound and balance. In mammals, these hair cells lack the capacity for regeneration. Unlike mammals, hair cells from non-mammalian vertebrates, such as birds, can be regenerated throughout the life of the organism making them a useful model for studying inner ear genetics pathways. The zinc finger transcription factor GATA3 is required for inner ear development and mutations cause sensory neural deafness in humans. In the avian cochlea GATA3 is expressed throughout the sensory epithelia; however, expression is limited to the striola of the utricle. The striola corresponds to an abrupt change in morphologically distinct hair cell types and a 180° shift in hair cell orientation. We used 3 complimentary approaches to identify potential downstream targets of GATA3 in the avian utricle. Specifically we used microarray expression profiling of GATA3 knockdown by siRNA and GATA3 over-expression treatments as well as direct comparisons of GATA3 expressing cells from the striola and non GATA3 expressing cells from the extra-striola. To identify genes that are co-expressed with GATA3 at the striola reversal zone, we compared gene expression in cells micro-dissected from the sensory epithelia of the chick utricle striola to cells from the surrounding extra-striola. There are 2 biological samples and experiments include technical replicates as well as dye-switches for a total of 8 microarrays.
Project description:The inner ear utilizes sensory hair cells as mechano-electric transducers for sensing sound and balance. In mammals, these hair cells lack the capacity for regeneration. Unlike mammals, hair cells from non-mammalian vertebrates, such as birds, can be regenerated throughout the life of the organism making them a useful model for studying inner ear genetics pathways. The zinc finger transcription factor GATA3 is required for inner ear development and mutations cause sensory neural deafness in humans. In the avian cochlea GATA3 is expressed throughout the sensory epithelia; however, expression is limited to the striola of the utricle. The striola corresponds to an abrupt change in morphologically distinct hair cell types and a 180° shift in hair cell orientation. We used 3 complimentary approaches to identify potential downstream targets of GATA3 in the avian utricle. Specifically we used microarray expression profiling of GATA3 knockdown by siRNA and GATA3 over-expression treatments as well as direct comparisons of GATA3 expressing cells from the striola and non GATA3 expressing cells from the extra-striola.
Project description:The avian utricle, a vestibular organ of the inner ear, displays turnover of sensory hair cells throughout life. This is in sharp contrast to the mammalian utricle, which shows limited regenerative capacity. Here, we use single-cell RNA-sequencing to identify distinct marker genes for the different sensory hair cell subtypes of the chicken utricle, which we validated in situ . We provide markers for spatially distinct supporting cell populations, and identified two transitional cell populations of dedifferentiating supporting cells and developing hair cells. Trajectory reconstruction resulted in an inventory of gene expression dynamics of natural hair cell generation in the avian utricle.
Project description:In adult mammals, hair cell loss is irreversible and may result in hearing and balance deficits. In contrast, birds can regenerate hair cells through differentiation of supporting cells and restore inner ear function, suggesting that hair cell progenitors are present in the population of supporting cells. We used microarrays to identify novel genes related to the regeneration in the chicken utricle. Supporting cell and hair cell populations of chicken utricle obtained by laser capture microdissection, following to do RNA extraction and hybridization on Affymetrix microarrays.
Project description:The mammalian cochlea loses its ability to regenerate new hair cells prior to the onset of hearing. In contrast, the adult vestibular system can produce new hair cells in response to damage, or by reprogramming of supporting cells with the hair cell transcription factor Atoh1. We used RNA-seq and ATAC-seq to probe the transcriptional and epigenetic responses of utricle supporting cells to damage and Atoh1 transduction. We show that the improved regenerative response of the utricle correlates with a more accessible chromatin structure in utricle supporting cells compared to their cochlear counterparts. We also provide evidence that Atoh1 transduction of supporting cells is able to promote increased transcriptional accessibility of some hair cell genes. Our study offers a possible explanation for regenerative differences between sensory organs of the inner ear, but shows that additional factors to Atoh1 may be required for optimal reprogramming of hair cell fate.
Project description:In adult mammals, hair cell loss is irreversible and may result in hearing and balance deficits. In contrast, birds can regenerate hair cells through differentiation of supporting cells and restore inner ear function, suggesting that hair cell progenitors are present in the population of supporting cells. We used microarrays to identify novel genes related to the regeneration in the chicken utricle.
Project description:Single-cell proteomics can reveal the changing protein composition of differentiating cells. We used shotgun mass spectrometry to determine the abundant proteins present in single or small pools of subpicoliter-sized cells from the embryonic day 15 (E15) utricle of the chicken inner ear, when many hair cells are differentiating from progenitor (supporting) cells. The actin monomer binding protein thymosin β4 (TMSB4X) was present in E15 progenitor cells at nearly equimolar levels relative to actin, but dropped to one-tenth that value in hair cells, with little change in total actin. Single-cell RNA-seq analysis of E15 utricle cells showed that TMSB4X transcripts fell in abundance once hair-cell differentiation initiated. These results suggest that most actin is sequestered in progenitor cells, but upon differentiation to hair cells, actin is released, permitting assembly of the sensory hair bundle.
Project description:In contrast to mammals, the avian cochlea, specifically the basilar papilla, can regenerate sensory hair cells, which involves fate conversion of supporting cells to hair cells. To determine the mechanisms for converting supporting cells to hair cells, we used single-cell RNA sequencing during hair cell regeneration in explant cultures of chick basilar papillae. We identified dynamic changes in the gene expression of supporting cells, and the pseudotime trajectory analysis demonstrated the stepwise fate conversion from supporting cells to hair cells. Initially, supporting cell identity was erased and transition to the precursor state occurred. A subsequent gain in hair cell identity progressed together with downregulation of precursor-state genes. Transforming growth factor beta receptor 1-mediated signaling was involved in induction of the initial step, and its inhibition resulted in suppression of hair cell regeneration. Our data provide new insights for understanding fate conversion from supporting cells to hair cells in avian basilar papillae.
Project description:Retinoblastoma gene (Rb1) is required for proper cell cycle exit in the developing mouse inner ear and its deletion in the embryo leads to proliferation of sensory progenitor cells that differentiate into hair cells and supporting cells. In the Pou4f3-Cre:Rb1 flox/flox (Rb1 cKO) inner ear, utricular hair cells differentiate and survive into adulthood whereas differentiation and survival of cochlear hair cells are impaired. To comprehensively survey the pRb pathway in the mammalian inner ear, we performed microarray analysis of Rb1 cKO cochlea and utricle.