Project description:Erythroid progenitor BFU-Es are so-named based on their ability to generate in methylcellulose culture large colonies of erythroid cells that consist of “bursts” of smaller erythroid colonies derived from the later CFU-E Epo- dependent progenitors. “Early” BFU-E cells forming large BFU-E colonies presumably have higher capacities for self-renewal than do those forming small BFU-E colonies. In order to understand the mechanism underlying this heterogeneity, we conducted single cell transcriptome analysis on BFU-E cells purified from mouse embryos. Our analyses showed that there are two principal subgroups of mouse BFU-E cells and that the type III TGFβ receptor (TβRIII) is a potential marker that distinguishes “early” and “late” BFU-Es. Expression of TβRIII is correlated with that of GATA1, a gene encoding an erythroid transcription factor induced during the BFU-E to CFU-E transition. The mouse and human BFU-E sub populations (TßRIII10%lo) expressing the 10% lowest amount of surface TβRIII are indeed enriched for early BFU-Es, and are significantly more responsive to glucocorticoid stimulation, which promotes BFU-E self-renewal, as compared to the total BFU-E population. The TßRIII10%lo BFU-E subpopulation presumably represents earlier BFU-Es with maximal capacity for self-renewal. Consistent with this notion, signaling by the TGFβ receptor kinases RI and RII increases during the transition from early (TßRIII10%lo) to late (TßRIII10%hi) BFU-Es and then decreases in CFU-E cells. Blocking TGF-β signaling by receptor kinase inhibitors increase TßRIII10%lo BFU-E cell self-renewal and increases total erythroblast production, suggesting the use of this type of drug in treating Epo unresponsive anemias.
Project description:With the aim of finding small molecules that stimulate erythropoiesis earlier than erythropoietin and that enhance CFU-E production, we studied the mechanism by which glucocorticoids increase CFU-E formation. Using BFU-E and CFU-E progenitors purified by a new technique, we demonstrate that glucocorticoids stimulate the earliest (BFU-E) progenitors to undergo limited self-renewal, which increases formation of CFU-E cells > 20-fold. Interestingly, glucocorticoids induce expression of genes in BFU-E cells that contain promoter regions highly enriched for hypoxia-induced factor 1 alpha (HIF1a) binding sites. This suggests activation of HIF1a may enhance or replace the effect of glucocorticoids on BFU-E self-renewal. Indeed, HIF1a activation by a prolyl hydroxylase inhibitor (PHI) synergizes with glucocorticoids and enhances production of CFU-Es 170-fold. Since PHIs are able to increase erythroblast production at very low concentrations of glucocorticoids, PHI-induced stimulation of BFU-E progenitors thus represents a conceptually new therapeutic window for treating Epo-resistant anemia. RNA-Seq was performed on enriched populations of BFU-E, CFU-E and Ter119+ as well as BFU-E enriched cells treated with Dex and DMOG
Project description:With the aim of finding small molecules that stimulate erythropoiesis earlier than erythropoietin and that enhance CFU-E production, we studied the mechanism by which glucocorticoids increase CFU-E formation. Using BFU-E and CFU-E progenitors purified by a new technique, we demonstrate that glucocorticoids stimulate the earliest (BFU-E) progenitors to undergo limited self-renewal, which increases formation of CFU-E cells > 20-fold. Interestingly, glucocorticoids induce expression of genes in BFU-E cells that contain promoter regions highly enriched for hypoxia-induced factor 1 alpha (HIF1a) binding sites. This suggests activation of HIF1a may enhance or replace the effect of glucocorticoids on BFU-E self-renewal. Indeed, HIF1a activation by a prolyl hydroxylase inhibitor (PHI) synergizes with glucocorticoids and enhances production of CFU-Es 170-fold. Since PHIs are able to increase erythroblast production at very low concentrations of glucocorticoids, PHI-induced stimulation of BFU-E progenitors thus represents a conceptually new therapeutic window for treating Epo-resistant anemia.
Project description:Synergism between PPARα and glucocorticoid receptor signaling promotes self-renewal of BFU-E erythroid progenitors and increases red cell production
Project description:Forced expression of Gata1, Tal1, Lmo2 and c-Myc reprograms murine adult fibroblasts into erythroid progenitor cells. The resulting cells, called induced erythroid progenitors/precursors (iEPs), resemble bona fide erythroid cells in terms of morphology, colony forming capacity, and gene expression. We used microarrays to characterize the reprogrammed cells (iEP_red and iEP_non-red) at the molecular level and compare their global gene expression profile with bona fide erythroid cells (FL and BM BFU-Es) and starting fibroblasts (Fibs).
Project description:Burst-forming unit-erythroid (BFU-E) and colony-forming unit-erythroid (CFU-E) cells are erythroid progenitors traditionally defined by colony assays. We developed a flow cytometry-based strategy for isolating human BFU-E and CFU-E cells based on the changes in expression of cell surface markers during in vitro erythroid cell culture. BFU-E and CFU-E are characterized by CD45+GPA-IL-3R-CD34+CD36-CD71low and CD45+GPA-IL-3R-CD34-CD36+CD71high phenotypes, respectively. Colony assays validated phenotypic assignment giving rise to BFU-E and CFU-E colonies, both at a purity ~90%. The BFU-E colony forming ability of CD45+GPA-IL-3R-CD34+CD36-CD71low cells required SCF and erythropoietin, while the CFU-E colony forming ability of CD45+GPA-IL-3R-CD34-CD36+CD71high cells required only erythropoietin. Bioinformatic analysis of the RNA-seq data revealed unique transcriptomes in each differentiation stage. The sorting strategy was validated in uncultured primary cells isolated from bone marrow and peripheral blood, indicating that marker expression is not an artifact of in vitro cell culture, but represents an in vivo characteristic of erythroid progenitor populations. The ability to isolate highly pure human BFU-E and CFU-E progenitors will enable detailed cellular and molecular characterization of these distinct progenitor populations and define their contribution to disordered erythropoiesis in inherited and acquired hematological disease. Our data provide important resource for future studies. Transcription profiles of Human erythroid progenitors at distinct developmental stages were generated by deep sequencing, in triplicate, using IlluminaHiSeq 2000. The complete dataset comprises 4 sample types: CD34, BFU, CFU, and Pro (reanalysis of GSM1304777-GSM1304779).
Project description:Synergism between PPARα and glucocorticoid receptor signaling promotes self-renewal of BFU-E erythroid progenitors and increases red cell production [RNA-seq]
Project description:Synergism between PPARα and glucocorticoid receptor signaling promotes self-renewal of BFU-E erythroid progenitors and increases red cell production [ChIP-seq]
Project description:Massive expansion of erythroid progenitor cells is essential for surviving anemic stress. Research towards understanding this critical process, referred to as stress-erythropoiesis, has been hampered due to lack of specific marker-combinations enabling analysis of the distinct stress-progenitor cells capable of providing radioprotection and enhanced red blood cell production. Here we present a method for precise identification and in vivo validation of progenitor cells contributing to both steady-state and stress-erythropoiesis, enabling for the first time in-depth molecular characterization of these cells. Differential expression of surface markers CD150, CD9 and Sca1 defines a hierarchy of splenic stress-progenitors during irradiation-induced stress recovery in mice, and provides high-purity isolation of the functional stress-BFU-Es with a 100-fold improved enrichment compared to state-of-the-art. By transplanting purified stress-progenitors expressing the fluorescent protein Kusabira Orange, we have for the first time determined their kinetics in vivo and demonstrated that CD150+CD9+Sca1- stress-BFU-Es provide a massive but transient radioprotective erythroid wave, followed by multi-lineage reconstitution from CD150+CD9+Sca1+ multi-potent stem/progenitor cells. Whole genome transcriptional analysis revealed that stress-BFU-Es express gene signatures more associated with erythropoiesis and proliferation compared to steady-state BFU-Es, and are BMP-responsive. Evaluation of chromatin accessibility through ATAC sequencing reveals enhanced and differential accessibility to binding sites of the chromatin-looping transcription factor CTCF in stress-BFU-Es compared to steady-state BFU-Es. Our findings offer molecular insight to the unique capacity of stress-BFU-Es to rapidly form erythroid cells in response to anemia and constitute an important step towards identifying novel erythropoiesis stimulating agents.
Project description:How erythropoiesis responds to fasting remains to be explored. Here, Xu et al. showed that short-term intensive fasting promotes the production of red blood cells and boosts their functions by regulating MS4A3-CDK2 module to enhance megakaryocyte-erythroid progenitor self-renewal and erythroid-biased differentiation.