Project description:Derivation and expansion of human umbilical cord blood-derived endothelial colony forming cells under serum-free conditions - a transcriptome analysis. Endothelial colony forming cells (ECFCs) were isolated from term umbilical cord blood units. ECFCs were expanded under standard, fetal bovine serum (FBS) containing endothelial medium, or transferred to chemically defined endothelial media without FBS. Microarray expression profiling was applied to compare the transcriptome profiles in FBS-containing versus FBS-free culture. Comparison of the expression patterns of ECFCs that were either cultured in FBS-containing medium or in serum-free medium (five replicates each).
Project description:Derivation and expansion of human umbilical cord blood-derived endothelial colony forming cells under serum-free conditions - a transcriptome analysis. Endothelial colony forming cells (ECFCs) were isolated from term umbilical cord blood units. ECFCs were expanded under standard, fetal bovine serum (FBS) containing endothelial medium, or transferred to chemically defined endothelial media without FBS. Microarray expression profiling was applied to compare the transcriptome profiles in FBS-containing versus FBS-free culture.
Project description:miRNA profiling was carried out using the miRCURY LNA™ microRNA Array (5th gen - hsa, mmu & rno). microRNA profiling of CB and PB-derived ECFCs from 3 independent donors from each cell source. To identify and understand the regulation of endothelial cell functions through comparing miRNA expression profiling of cord blood (CB) derived endothelial colony forming cells (ECFCs) and peripheral blood (PB) ECFCs
Project description:Endothelial colony-forming cells (ECFCs) have been reported as promising cells for regenerative medicine thanks to their angiorepair properties. Transcription factors are primary determinants of the functional capacity of the cells and TAL1 has been shown as a critical regulator of endothelial lineage in both development and adult life. However, only few (three) TAL1 targets have been identified so far in mouse and human endothelial cells. This ChIP-seq experiment was designed to identify genome binding/occupancy of TAL1 by ChIP and high throughput sequencing in primary human endothelial stem/progenitor cells. TAL1 ChIP and IgG ChIP (negative control) were performed in crosslinked ECFCs derived from human umbilical cord blood.
Project description:Transcriptional profiling of Homo sapiens inflammatory skin diseases (whole skin biospies): Psoriasis (Pso), vs Atopic Dermatitis (AD) vs Lichen planus (Li), vs Contact Eczema (KE), vs Healthy control (KO) In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation. In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression. Two-condition experiment, Normoxic MSCs vs. Hypoxic MSCs.
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs. Two-condition experiment, KP MSCs vs. 3A6 MSCs.
Project description:The term placenta is a highly vascularized tissue and is usually discarded upon birth. Our objective was to isolate clinically relevant quantities of fetal endothelial colony-forming cells (ECFCs) from human term placenta and to compare them to the well-established donor-matched umbilical cord blood (UCB)-derived ECFCs. A sorting strategy was devised to enrich for CD45-CD34+CD31Lo cells prior to primary plating to obtain pure placental ECFCs (PL-ECFCs) upon culture. UCB-ECFCs were derived using a well-described assay. PL-ECFCs were fetal in origin and expressed the same cell surface markers as UCB-ECFCs. Most importantly, a single term placenta could yield as many ECFCs as 27 UCB donors. PL-ECFCs and UCB-ECFCs had similar in vitro and in vivo vessel forming capacities and restored mouse hind limb ischemia in similar proportions. Gene expression profiles were only minimally divergent between PL-ECFCs and UCB-ECFCs, probably reflecting a vascular source versus a circulating source. Finally, PL-ECFCs and UCB-ECFCs displayed similar hierarchies between high and low proliferative colonies. We report a robust strategy to isolate ECFCs from human term placentas based on their cell surface expression. This yielded much larger quantities of ECFCs than UCB, but the cells were comparable in immunophenotype, gene expression, and in vivo functional ability. We conclude that PL-ECFCs have significant bio-banking and clinical translatability potential. Data has been integrated into the Stemformatics web resource http://www.stemformatics.org/datasets/view/6306
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.