Project description:DNA methylation on N6-adenine (6mA) has recently been found as a potentially new epigenetic mark in several unicellular and multicellular eukaryotes. However, its distribution patterns and potential functions in land plants, which are primary producers for most ecosystems, remain completely unknown. Here we report global profiling of 6mA sites at single-nucleotide resolution in the genome of Arabidopsis thaliana using single-molecule real-time sequencing. 6mA sites are widely distributed across the Arabidopsis genome and enriched over the pericentromeric heterochromatin regions. Nearly 30% of 6mA sites are present in gene bodies. Further analysis of 6mA methylome and RNA-sequencing data demonstrates that 6mA frequency positively correlates with the gene expression level in Arabidopsis. Consistently, histone variants associated with actively expressed genes interact with 6mA DNA. Our results uncover 6mA as a DNA mark associated with actively expressed genes in Arabidopsis, suggesting that 6mA serves as a novel epigenetic mark in land plants.
Project description:DNA methylation on N6-adenine (6mA) has recently been found as a potentially new epigenetic mark in several unicellular and multicellular eukaryotes. However, its distribution patterns and potential functions in land plants, which are primary producers for most ecosystems, remain completely unknown. Here we report global profiling of 6mA sites at single-nucleotide resolution in the genome of Arabidopsis thaliana using single-molecule real-time sequencing. 6mA sites are widely distributed across the Arabidopsis genome and enriched over the pericentromeric heterochromatin regions. Nearly 30% of 6mA sites are present in gene bodies. Further analysis of 6mA methylome and RNA-sequencing data demonstrates that 6mA frequency positively correlates with the gene expression level in Arabidopsis. Consistently, histone variants associated with actively expressed genes interact with 6mA DNA. Our results uncover 6mA as a DNA mark associated with actively expressed genes in Arabidopsis, suggesting that 6mA serves as a novel epigenetic mark in land plants.
Project description:The objective of the study is to profile histone H3 lysine nine di-methylation (H3K9me2) in Arabidopsis thaliana and to correlate it with DNA methylation.
Project description:DNA methylation on N6-adenine (6mA), the most prevalent DNA modification in prokaryotes, has recently been found as a potentially new epigenetic mark in several unicellular and multicellular eukaryotes. However, the distribution patterns and potential functions of 6mA in land plants, which are primary producers for most ecosystems, remain completely unknown. Here we report global profiling of 6mA sites at single-nucleotide resolution in the genomes of Arabidopsis thaliana Columbia-0 (Col), using single-molecule real-time sequencing. DNA methylome analysis shows that 6mA sites are widely distributed across the Col genomes and enriched over the pericentromeric heterochromatin regions. Nearly 30% of 6mA sites are present in gene bodies with a trend of enrichment around the transcriptional start site. In addition to a common consensus 6mA site found in other eukaryotes, novel 6mA sites were found, indicating that 6mA could evolve new functions in land plants. Further analysis of 6mA methylome and RNA-sequencing data demonstrates that 6mA positively correlates with the gene expression level in Col plants. Consistently, DNA affinity chromatography coupled with mass spectrometry reveals that histone variants associated with actively expressed genes interact with 6mA DNA. Our results uncover 6mA as a DNA mark associated with actively expressed genes in Arabidopsis, indicating that 6mA could serve as a potentially novel epigenetic mark in land plants.
Project description:DNA methylation on N6-adenine (6mA), the most prevalent DNA modification in prokaryotes, has recently been found as a potentially new epigenetic mark in several unicellular and multicellular eukaryotes. However, the distribution patterns and potential functions of 6mA in land plants, which are primary producers for most ecosystems, remain completely unknown. Here we report global profiling of 6mA sites at single-nucleotide resolution in the genomes of Arabidopsis thaliana Columbia-0 (Col), using single-molecule real-time sequencing. DNA methylome analysis shows that 6mA sites are widely distributed across the Col genomes and enriched over the pericentromeric heterochromatin regions. Nearly 30% of 6mA sites are present in gene bodies with a trend of enrichment around the transcriptional start site. In addition to a common consensus 6mA site found in other eukaryotes, novel 6mA sites were found, indicating that 6mA could evolve new functions in land plants. Further analysis of 6mA methylome and RNA-sequencing data demonstrates that 6mA positively correlates with the gene expression level in Col plants. Consistently, DNA affinity chromatography coupled with mass spectrometry reveals that histone variants associated with actively expressed genes interact with 6mA DNA. Our results uncover 6mA as a DNA mark associated with actively expressed genes in Arabidopsis, indicating that 6mA could serve as a potentially novel epigenetic mark in land plants.