Project description:Genome reduction is pervasive among maternally inherited bacterial endosymbionts. This genome reduction can eventually lead to serious deterioration of essential metabolic pathways, thus rendering an obligate endosymbiont unable to provide essential nutrients to its host. This loss of essential pathways can lead to either symbiont complementation (sharing of the nutrient production with a novel co-obligate symbiont) or symbiont replacement (complete takeover of nutrient production by the novel symbiont). However, the process by which these two evolutionary events happen remains somewhat enigmatic by the lack of examples of intermediate stages of this process. Cinara aphids (Hemiptera: Aphididae) typically harbor two obligate bacterial symbionts: Buchnera and Serratia symbiotica. However, the latter has been replaced by different bacterial taxa in specific lineages, and thus species within this aphid lineage could provide important clues into the process of symbiont replacement. In the present study, using 16S rRNA high-throughput amplicon sequencing, we determined that the aphid Cinara strobi harbors not two, but three fixed bacterial symbionts: Buchnera aphidicola, a Sodalis sp., and S. symbiotica. Through genome assembly and genome-based metabolic inference, we have found that only the first two symbionts (Buchnera and Sodalis) actually contribute to the hosts' supply of essential nutrients while S. symbiotica has become unable to contribute towards this task. We found that S. symbiotica has a rather large and highly eroded genome which codes only for a few proteins and displays extensive pseudogenization. Thus, we propose an ongoing symbiont replacement within C. strobi, in which a once "competent" S. symbiotica does no longer contribute towards the beneficial association. These results suggest that in dual symbiotic systems, when a substitute cosymbiont is available, genome deterioration can precede genome reduction and a symbiont can be maintained despite the apparent lack of benefit to its host.
Project description:The genome sequencing of Buchnera aphidicola BCc from the aphid Cinara cedri, which is the smallest known Buchnera genome, revealed that this bacterium had lost its symbiotic role, as it was not able to synthesize tryptophan and riboflavin. Moreover, the biosynthesis of tryptophan is shared with the endosymbiont Serratia symbiotica SCc, which coexists with B. aphidicola in this aphid. The whole-genome sequencing of S. symbiotica SCc reveals an endosymbiont in a stage of genome reduction that is closer to an obligate endosymbiont, such as B. aphidicola from Acyrthosiphon pisum, than to another S. symbiotica, which is a facultative endosymbiont in this aphid, and presents much less gene decay. The comparison between both S. symbiotica enables us to propose an evolutionary scenario of the transition from facultative to obligate endosymbiont. Metabolic inferences of B. aphidicola BCc and S. symbiotica SCc reveal that most of the functions carried out by B. aphidicola in A. pisum are now either conserved in B. aphidicola BCc or taken over by S. symbiotica. In addition, there are several cases of metabolic complementation giving functional stability to the whole consortium and evolutionary preservation of the actors involved.
Project description:Particularly interesting cases of mutualistic endosymbioses come from the establishment of co-obligate associations of more than one species of endosymbiotic bacteria. Throughout symbiotic accommodation from a free-living bacterium, passing through a facultative stage and ending as an obligate intracellular one, the symbiont experiences massive genomic losses and phenotypic adjustments. Here, we scrutinized the changes in the coevolution of Serratia symbiotica and Buchnera aphidicola endosymbionts in aphids, paying particular attention to the transformations undergone by S. symbiotica to become an obligate endosymbiont. Although it is already known that S. symbiotica is facultative in Acyrthosiphon pisum, in Cinara cedri it has established a co-obligate endosymbiotic consortium along with B. aphidicola to fulfill the aphid's nutritional requirements. The state of this association in C. tujafilina, an aphid belonging to the same subfamily (Lachninae) that C. cedri, remained unknown. Here, we report the genome of S. symbiotica strain SCt-VLC from the aphid C. tujafilina. While being phylogenetically and genomically very closely related to the facultative endosymbiont S. symbiotica from the aphid A. pisum, it shows a variety of metabolic, genetic, and architectural features, which point toward this endosymbiont being one step closer to an obligate intracellular one. We also describe in depth the process of genome rearrangements suffered by S. symbiotica and the role mobile elements play in gene inactivations. Finally, we postulate the supply to the host of the essential riboflavin (vitamin B2) as key to the establishment of S. symbiotica as a co-obligate endosymbiont in the aphids belonging to the subfamily Lachninane.