Project description:Background: Examining transcriptional regulation by existing antidepressants in key neural circuits implicated in depression, and understanding the relationship to transcriptional mechanisms of susceptibility and natural resilience, may help in the search for new therapeutics. Further, given the heterogeneity of treatment response in human populations, examining both treatment response and non-response is critical. Methods: We compared the effects of a conventional monoamine-based tricyclic antidepressant, imipramine (14 daily injections), and a rapidly acting, experimental, non-monoamine-based antidepressant, ketamine (single injection), in mice subjected to chronic social defeat stress, a validated model of depression, and used RNA-sequencing to analyze transcriptional profiles associated with susceptibility, resilience and antidepressant response and non-response in prefrontal cortex (PFC), nucleus accumbens, hippocampus, and amygdala. Results: We identified approximately equal numbers of responder and non-responder mice following ketamine or imipramine treatment. Ketamine induced more expression changes in hippocampus than other brain regions; imipramine induced more expression changes in nucleus accumbens and amygdala. Transcriptional profiles in ketamine and imipramine responders were most similar in PFC, where the least transcriptional regulation occurred for each drug. Non-response reflected both the lack of response-associated gene expression changes and unique gene regulation. In responders, both drugs reversed susceptible associated transcriptional changes as well as induced resilient associated transcription in PFC, with effects varying by drug and brain region studied. Conclusions: We generated a uniquely large resource of gene expression data in four inter-connected limbic brain regions implicated in depression and its treatment with imipramine or ketamine. Our analyses highlight the PFC as a key site of common transcriptional regulation by both antidepressant drugs and in both reversing susceptibility and inducing resilience associated molecular adaptations. In addition, we found region-specific effects of each drug suggesting both common and unique effects of imipramine versus ketamine. mRNA profiles of susceptibility to chronic social defeat stress as well as treatment response were generated across 4 separate brain regions, with a sample size of 3-5 per group.
Project description:Background: Examining transcriptional regulation by existing antidepressants in key neural circuits implicated in depression, and understanding the relationship to transcriptional mechanisms of susceptibility and natural resilience, may help in the search for new therapeutics. Further, given the heterogeneity of treatment response in human populations, examining both treatment response and non-response is critical. Methods: We compared the effects of a conventional monoamine-based tricyclic antidepressant, imipramine (14 daily injections), and a rapidly acting, experimental, non-monoamine-based antidepressant, ketamine (single injection), in mice subjected to chronic social defeat stress, a validated model of depression, and used RNA-sequencing to analyze transcriptional profiles associated with susceptibility, resilience and antidepressant response and non-response in prefrontal cortex (PFC), nucleus accumbens, hippocampus, and amygdala. Results: We identified approximately equal numbers of responder and non-responder mice following ketamine or imipramine treatment. Ketamine induced more expression changes in hippocampus than other brain regions; imipramine induced more expression changes in nucleus accumbens and amygdala. Transcriptional profiles in ketamine and imipramine responders were most similar in PFC, where the least transcriptional regulation occurred for each drug. Non-response reflected both the lack of response-associated gene expression changes and unique gene regulation. In responders, both drugs reversed susceptible associated transcriptional changes as well as induced resilient associated transcription in PFC, with effects varying by drug and brain region studied. Conclusions: We generated a uniquely large resource of gene expression data in four inter-connected limbic brain regions implicated in depression and its treatment with imipramine or ketamine. Our analyses highlight the PFC as a key site of common transcriptional regulation by both antidepressant drugs and in both reversing susceptibility and inducing resilience associated molecular adaptations. In addition, we found region-specific effects of each drug suggesting both common and unique effects of imipramine versus ketamine.
Project description:Major depressive disorder (MDD) is the leading cause of disability worldwide. There is an urgent need for objective biomarkers to diagnose this highly heterogeneous syndrome, assign treatment, and evaluate treatment response and prognosis. MicroRNAs (miRNAs) are short non-coding RNAs, which are detected in body fluids that have emerged as potential biomarkers of many disease conditions. The present study explored the potential use of miRNAs as biomarkers for MDD and its treatment. We profiled the expression levels of circulating blood miRNAs from mice that were collected before and after exposure to chronic social defeat stress (CSDS), an extensively validated mouse model used to study depression, as well as after either repeated imipramine or single-dose ketamine treatment. We observed robust differences in blood miRNA signatures between stress-resilient and stress-susceptible mice after an incubation period, but not immediately after exposure to the stress. Furthermore, ketamine treatment was more effective than imipramine at re-establishing baseline miRNA expression levels, but only in mice that responded behaviorally to the drug. We identified the red blood cell-specific miR-144-3p as a candidate biomarker to aid depression diagnosis and predict ketamine treatment response in stress-susceptible mice and MDD patients. Lastly, we demonstrate that systemic knockdown of miR-144-3p, via subcutaneous administration of a specific antagomir, is sufficient to reduce the depression-related phenotype in stress-susceptible mice. RNA-sequencing analysis of blood after such miR-144-3p knockdown revealed a blunted transcriptional stress signature as well. These findings identify miR-144-3p as a novel target for diagnosis of MDD as well as for antidepressant treatment, and enhance our understanding of epigenetic processes associated with depression.
Project description:Ketamine has rapid and sustained antidepressant effects in patients with treatment resistant depression (TRD). However, the underlying mechanisms of action are not well understood. There is increasing evidence that TRD is associated with a pro-inflammatory state and that ketamine may inhibit inflammatory cytokine production. We investigated whole blood transcriptional profiles related to TRD and gene expression changes associated with treatment response to ketamine. Whole blood was collected at baseline (21 healthy controls [HC], 26 patients with TRD) and then again in patients with TRD 24 hours following a single intravenous infusion of ketamine (0.5 mg/kg). We performed RNA-sequencing and compared a) baseline transcriptional profiles between patients with TRD and HC, b) responders vs. non-responders before ketamine treatment, and c) gene expression signatures associated with clinical improvement. At baseline, patients with TRD compared to HC were characterized by a gene expression signature indicative of interferon signaling pathway activation. Prior to ketamine administration, the metabotropic glutamate receptor gene GRM2 and the ionotropic glutamate receptor gene GRIN2D were upregulated in responders compared to non-responders. Ketamine response was associated with the downregulation of multiple genes coding for pro-inflammatory cytokines, the predicted inhibition of several interferon signaling associated upstream regulators and the downregulation of Indoleamine 2,3-Dioxygenase 1 (IDO1). The current study indicates that response to ketamine may be associated with up-regulation of glutamate receptors at baseline, and linked to transcriptional changes indicative of an anti-inflammatory response following ketamine. One specific anti-inflammatory mechanism might be the downregulation of IDO1 via inhibition of the interferon pathway.
Project description:Mental health disorders often arise as a combination of environmental and genetic factors. The FKBP5 gene, encoding the GR co-chaperone FKBP51, has been uncovered as a key genetic risk factor for stress related illness. However, the exact cell type and region-specific mechanisms by which FKBP51 contributes to stress resilience or susceptibility processes remain to be unravelled. FKBP51 functionality is known to interact with the environmental risk factors age and sex, but so far data on behavioral, structural and molecular consequences of these interactions are still largely unknown. Here we report the cell type- and sex-specific contribution of FKBP51 to stress susceptibility and resilience mechanisms under the high-risk environmental conditions of an older age, by using two conditional knockout models within glutamatergic (Fkbp5Nex) and GABAergic (Fkbp5Dlx) neurons of the forebrain. Specific manipulation of Fkbp5 in these two cell types led to opposing effects on behavior, brain structure and gene expression profiles in a highly sex-dependent fashion. The results emphasize the role of FKBP51 as a key player in stress-related illness and the need for more targeted and sex-specific treatment strategies.
Project description:The susceptibility to chronic social isolation (CSIS) is associated with development of major depression (MD). Recent studies relate MD with altered expression of synaptic proteins in specific brain regions, whereby some individuals exposed to the stressors are resistant to the stress. To explore the neurobiological underpinnings and identify candidate biomarkers for MD, a comparative proteomic approach was used to map hippocampal synaptic protein alterations of rats exposed to 6 weeks of CSIS, an animal model of depression. This model generates two stress-response phenotypes, reflecting CSIS-sensitive (depressive-like behaviour) and CSIS-resilience, assessed by sucrose preference test. Our aim was to characterize the synaptoproteome changes representative of potential long-term changes in protein expression underlying susceptibility or resilience to stress.
Project description:Alzheimer’s disease (AD), the leading cause of dementia, affects millions of people worldwide. With no disease-modifying medication currently available, the human toll and economic costs are rising rapidly. Under current standards, a patient is diagnosed with AD when both cognitive decline and pathology (amyloid plaques and neurofibrillary tangles) are present. Remarkably, some individuals who have AD pathology remain cognitively normal. Uncovering factors that lead to “cognitive resilience” to AD is a promising path to create new targets for therapies. However, technical challenges discovering novel human resilience factors limit testing, validation, and nomination of novel drugs for AD. In this study, we use single-nucleus transcriptional profiles of postmortem cortex from human individuals with high AD pathology who were either cognitively normal (resilient) or cognitively impaired (susceptible) at time of death, as well as mouse strains that parallel these differences in cognition with high amyloid load. Our cross-species discovery approach highlights a novel role for excitatory layer 4/5 cortical neurons in promoting cognitive resilience to AD, and nominates several resilience genes that include ATP1A1, GRIA3, KCNMA1, and STXBP1. This putative cell type has been implicated in resilience in previous studies on bulk RNA-seq tissue, but our single-nucleus and cross-species approach identifies particular resilience-associated gene signatures in these cells. These novel resilience candidate genes were tested for replication in orthogonal data sets and confirmed to be correlated with cognitive resilience. Based on these gene signatures, we identified several potential mechanisms of resilience, including regulation of synaptic plasticity, axonal and dendritic development, and neurite vesicle transport along microtubules that are potentially targetable by available therapeutics. Because our discovery of resilience-associated genes in layer 4/5 cortical neurons originates from an integrated human and mouse transcriptomic space from susceptible and resilient individuals, we are positioned to test causality and perform mechanistic, validation, and pre-clinical studies in our human-relevant AD-BXD mouse panel.
Project description:Numerous recent studies showed that early anesthesia during neurodevelopment may induce changes in specific behaviors. We further studied the effects of early anesthetic exposures regarding addiction behavior later in life. Postnatal day (PND) 16 C57BL/6 mice received ketamine anesthesia for 5 consecutive days. Addiction behavior was evaluated 1 week after anesthesia treatment. Neurological changes after repeated anesthesia were evaluated using high-performance liquid chromatography, RNA sequencing, electrophysiology studies. Repeated ketamine anesthesia during the critical neurodevelopment period increased the expression of genes involved with action potential, and induced excitatory/inhibitory (E/I) imbalance in hippocampal CA1 pyramidal neurons of male mice. Such neurological changes were associated with increases in drug-induced contextual addiction memory.
Project description:Glial cells (microglia and astrocytes) have recently became appreciated as an important target for antidepressant drugs. Here we report on the results of comprehensive proteomic analysis of the alteration in protein profile of rat primary mixed glial culture exposed to imipramine. Two-dimensional differential in gel electrophoresis method allowed to identify 62 proteins regulated by imipramine hydrochloride. Functional analysis revealed the impact of imipramine on the level of proteins involved in oxidative stress. Imipramine upregulated proteins related to glycolysis but downregulated many mitochondrial proteins also enzymes of oxidative phosphorylation. Moreover, imipramine influenced the proteins engaged in phagocytosis and cell migration. Alteration in the level of large number of structural and plasma membrane associated proteins evidenced a widespread cytoskeleton and membrane rearrangement. Imipramine triggered decrease of mitochondrial membrane potential, impairment of protein synthesis and downregulation of chaperon proteins, what could be related to increased apoptosis. Many imipramine regulated proteins, among them chaperons, cathepsins and annexins are evidenced to be engaged in immunity response. Overall these experimental findings suggest that in response to imipramine, glial cells (mainly microglia) undergo a transition toward more quiescent, metabolically less demanding phenotype.