Project description:Cellular binary fate decisions require the progeny to silence genes associated with the alternative fate. The major subsets of alpha:beta T cells have been extensively studied as a model system for fate decisions. While the transcription factor RUNX3 is required for the initiation of Cd4 silencing in CD8 T cell progenitors, it is not required to maintain the silencing of Cd4 and other helper T lineage genes. The other runt domain containing protein, RUNX1, silences Cd4 in an earlier T cell progenitor, but this silencing is reversed whereas the gene silencing after RUNX3 expression is not reverse. Therefore, we hypothesized that RUNX3 and not RUNX1 recruits other factors that maintains the silencing of helper T lineage genes in CD8 T cells. To this end, we performed a proteomics screen of RUNX1 and RUNX3 to determine candidate silencing factors.
Project description:Myeloid-derived suppressor cells (MDSC) are a major barrier to anticancer responses. Although much is known about how MDSC promote tumor progression, little is known about how they develop. We hypothesized that MDSC develop as a consequence of tumor-induced downregulation of interferon regulatory factor-8 (IRF-8), a key myeloid developmental transcription factor. We showed that: 1) IRF8-deficiency in mice generated myeloid populations highly homologous to tumor-induced MDSC; 2) IRF-8 overexpression in mice reduced MDSC accumulation and retarded tumor growth; 3) MDSC-inducing factors, G-CSF or GM-CSF, facilitated IRF-8 downregulation via STAT3- or STAT5-dependent pathways, respectively; and 4) IRF-8 levels in MDSC-like subsets of breast cancer patients were depressed compared to healthy donors. Altogether, our data implicate IRF-8 as a novel MDSC-dependent transcription factor. Splenic CD11b+Gr-1high cell populations from tumor-bearing mice, IRF8 knockout mice or non-tumor-bearing control mice were purified in two independent experiments by flow cytometry (> 97% purity) and subjected to whole genome expression profiling using Illumina microarrays.
Project description:Myeloid derived Suppressor cells (MDSC) are heterogenous popluation of cells consists of two major subsets namely the monocytic Gr-1dull/int. and granulocytic (Gr-1high). These distinct two subsets use different mechanism to inhibit T cell response. In addition, how the function of these subsets is regulated is not known yet. The Gr-1dull/int. MDSC are suppressing T cells through IFNg dependent nitric oxide dependent manner. However, the exact suppressive mechanism of Gr-1high MDSC is not clear. Here we studied the role of a cytokine IFNg on the suppressive function of Gr-1high MDSC by comparing the gene expression of Gr-1high cells cultured alone versus those cultured with T cells which donot produce IFNgamma. CD11b+Gr-1high cells were purified from the splenocyte of CT-26 colon tumor bearing mice. The purified CD11b+Gr-1high MDSCs were cultured with IFNg-/- antigen specific T cells and re- sorted after 48h and RNA was extracted and gene expression was analyzed using topic-defined PIQORTM Immunology Microarrays.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.
Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility.