Project description:Germline small RNA pathways initiate silencing of repetitive elements in animals and an interplay of nuclear small RNAs and chromatin modifications maintain this silencing, protecting the germline from spreading of transposable elements. In C. elegans germline, nuclear argonaute protein HRDE-1 initiates the transcriptional silencing pathway that is crucial for long term and heritable silencing of genes and repetitive regions. Here, we show that HRDE-1 interacts with components of the splicing machinery and the exon-junction complex. One such factor is the conserved RNA helicase EMB-4/AQR that binds introns and recruits the exon-junction proteins to newly spliced RNA. Our data shows that EMB-4/AQR is required for the transcriptional silencing pathway initiated by HRDE-1 and it functions by removing the intronic barriers to silencing thorugh its helicase function.
Project description:piRNAs are required to maintain germline integrity and fertility but their mechanism of action is poorly understood. Here we demonstrate that C. elegans piRNAs silence transcripts in trans through imperfectly complementary sites. We find that target silencing is independent of Piwi endonuclease activity or “slicing”. Instead, we show that piRNAs initiate a localized secondary endogenous small interfering RNA (endo-siRNA) response. Endogenous protein-coding gene, pseudogene and transposon transcripts exhibit Piwi-dependent endo-siRNAs at sites complementary to piRNAs and are derepressed in Piwi mutants. Genomic loci of piRNA biogenesis are depleted of protein-coding genes but not pseudogenes or transposons. Our data suggest that nematode piRNA clusters are evolving to generate piRNAs against active mobile elements. Thus, piRNAs provide heritable, sequence-specific triggers for RNAi in C. elegans. Affymetrix mRNA expression data from wild-type and two independent prg-1;prg-2 double mutant C. elegans strains (mRNA)
Project description:Gene silencing mediated by dsRNA (RNAi) can persist for multiple generations in C. elegans (termed RNAi inheritance). Here we describe the results of a forward genetic screen in C. elegans that has identified six factors required for RNAi inheritance: GLH-1/VASA, PUP-1/CDE-1, MORC-1, SET-32, and two novel nematode-specific factors that we term here (heritable RNAi defective) HRDE-2 and HRDE-4. The new RNAi inheritance factors exhibit mortal germline (Mrt) phenotypes, which we show is likely caused by epigenetic deregulation in germ cells. We also show that HRDE-2 contributes to RNAi inheritance by facilitating the binding of small RNAs to the inheritance Argonaute (Ago) HRDE-1. Together, our results identify additional components of the RNAi inheritance machinery whose sequence conservation provides insights into the molecular mechanism of RNAi inheritance, further our understanding of how the RNAi inheritance machinery promotes germline immortality, and show that HRDE-2 couples the inheritance Ago HRDE-1 with the small RNAs it needs to direct RNAi inheritance and germline immortality.
Project description:piRNAs are required to maintain germline integrity and fertility but their mechanism of action is poorly understood. Here we demonstrate that C. elegans piRNAs silence transcripts in trans through imperfectly complementary sites. We find that target silencing is independent of Piwi endonuclease activity or “slicing”. Instead, we show that piRNAs initiate a localized secondary endogenous small interfering RNA (endo-siRNA) response. Endogenous protein-coding gene, pseudogene and transposon transcripts exhibit Piwi-dependent endo-siRNAs at sites complementary to piRNAs and are derepressed in Piwi mutants. Genomic loci of piRNA biogenesis are depleted of protein-coding genes but not pseudogenes or transposons. Our data suggest that nematode piRNA clusters are evolving to generate piRNAs against active mobile elements. Thus, piRNAs provide heritable, sequence-specific triggers for RNAi in C. elegans.
Project description:piRNAs are required to maintain germline integrity and fertility but their mechanism of action is poorly understood. Here we demonstrate that C. elegans piRNAs silence transcripts in trans through imperfectly complementary sites. We find that target silencing is independent of Piwi endonuclease activity or “slicing”. Instead, we show that piRNAs initiate a localized secondary endogenous small interfering RNA (endo-siRNA) response. Endogenous protein-coding gene, pseudogene and transposon transcripts exhibit Piwi-dependent endo-siRNAs at sites complementary to piRNAs and are derepressed in Piwi mutants. Genomic loci of piRNA biogenesis are depleted of protein-coding genes but not pseudogenes or transposons. Our data suggest that nematode piRNA clusters are evolving to generate piRNAs against active mobile elements. Thus, piRNAs provide heritable, sequence-specific triggers for RNAi in C. elegans. 7 small RNA libraries were sequenced as part of 25 flow cell lanes on the Illumina GA II platform. Samples were treated with tobacco acid pyrophosphatase to allow cloning of small RNAs with a 5'-triphosphate. Samples were labelled for multiplexing using 4-bp 5'-barcodes or barcodes included in Illumina TruSeq adapters. In most cases a single flow cell lane included several multiplexed libraries.
Project description:piRNAs are required to maintain germline integrity and fertility but their mechanism of action is poorly understood. Here we demonstrate that C. elegans piRNAs silence transcripts in trans through imperfectly complementary sites. We find that target silencing is independent of Piwi endonuclease activity or “slicing”. Instead, we show that piRNAs initiate a localized secondary endogenous small interfering RNA (endo-siRNA) response. Endogenous protein-coding gene, pseudogene and transposon transcripts exhibit Piwi-dependent endo-siRNAs at sites complementary to piRNAs and are derepressed in Piwi mutants. Genomic loci of piRNA biogenesis are depleted of protein-coding genes but not pseudogenes or transposons. Our data suggest that nematode piRNA clusters are evolving to generate piRNAs against active mobile elements. Thus, piRNAs provide heritable, sequence-specific triggers for RNAi in C. elegans.
Project description:Through high-throuhgput RNA-sequencing, this study identifies mRNAs that are differentially expressed between plp-1(ok2155) and wild-type C. elegans. Analysed results are published in Development. 2020 Oct 13:dev.195578. doi: 10.1242/dev.195578. PMID: 33051256 Abstract of the publication: The germ line genome is guarded against invading foreign genetic elements by small RNA-dependent gene-silencing pathways. Components of these pathways localize to, or form distinct aggregates in the vicinity of, germ granules. These components and their dynamics in and out of granules are currently being intensively studied. Here, we report the identification of PLP-1, a C. elegans protein related to the human single-stranded nucleic acid-binding protein called Pur-alpha, as a component of germ granules in C. elegans We show that PLP-1 is essential for silencing different types of transgenes in the germ line, and for suppressing the expression of several endogenous genes controlled by the germline gene-silencing pathways. Our results reveal that PLP-1 functions downstream of small RNA biogenesis during initiation of gene silencing. Based on these results and the earlier findings that Pur-alpha proteins interact with both RNA and protein, we propose PLP-1 couples certain RNAs with their protein partners in the silencing complex. Its orthologs localized on RNA granules may similarly contribute to germline gene silencing in other organisms.