Project description:Cordyceps participates in various pharmacological activities including anti-tumor, and is involved in the regulation of NF-κB signaling pathway. However, the detailed role of cordycepin in suppression of NF-κB signaling pathway is less clear. In this study, we first analyzed the effect of cordyceps on NF-κB activity in TK-10 cells, and found that cordyceps resulted in a dose-dependent reduction in TNF-α-induced NF-κB activation. Here, we show that cordyceps mediated NF-kB inhibition induces apoptosis in TK-10 cells involved the serial activation of caspases. Moreover, we demonstrate that in addition to activating caspases, the cordyceps negatively modulates TNF-α-mediated NF-κB signaling to promote JNK activation, which results in apoptosis, and that NF-kB regulates antiapoptotic factor GADD45b and the JNK kinase MKK7. When the TNFα cytokine binds to the TNF receptor, IκB dissociates from NF-κB. As a result, the active NF-κB translocates to the nucleus. Cordyceps clearly prevented NF-κB from mobilizing to the nucleus, resulting in downregulation of GADD45b, whereas upregulation of MKK7 and phosphorylation of JNK (p-JNK). This increased Bax activation, leading to marked cordyceps-induced apoptosis. Bax subfamily proteins induced apoptosis through caspase-3. Furthermore, siRNA mediated inhibition of MKK7 downregulated p-JNK and The JNK inhibitor SP600125 strongly inhibited Bax. Thus, these results indicate that cordyceps inhibits NF-κB/GADD45b signaling activation to upregulate MKK7-JNK signaling pathway to induce apoptosis in TK-10 cells and support the potential of cordyceps as a therapeutic agent for renal cancer.
Project description:Although therapy responsiveness to therapy in Burkitt lymphoma (BL) is high, relapsed disease and and chemoresistance remain a clinical challenge, and complete mechanisms underlying BL chemoresistance and how it can be circumvented is yet to be fully elucidated. In this study we present data showing that chymotrypsin-like serine proteases inhibitor Nα-tosyl-L-phenylalanine chloromethylketone (TPCK) and specific NF-κB inhibitor Bay-11 7082 can induce caspase-independent apoptosis in chemoresistant BL cells. We also demonstrate that both TPCK and Bay-11 7082-treatment leads to decreased NF-κB nuclear activity and that this is associated with sensitization of chemoresistant Burkitt lymphoma cells. Furthermore we investigated global transcriptional changes induced by Bay-11 7082 and TPCK in the DG-75 and Raji cell lines, respectively, by microarray analysis using Illumina BeadChips. TPCK-treatment of Raji and DG-75 cells resulted in 59 and 21 differently expressed genes, respectively, while Bay-11-treated Raji and DG-75 cells displayed 1403 and 8 differently expressed genes, respectively. Gene Ontology (GO) categorization confirmed enrichment of multiple GOs in Bay 11-treated Raji and DG-75 cells. Fifty percent of the 61 categories in Raji cells were categories sorting under Biological Processes and represented mostly increased gene expression. In DG-75 cells Bay-11 7082 induced significant gene ontology enrichment in only two categories, where the increased/decreased ratio was 1:1. Further unsupervised and supervised bioinformatics processing by Ingenuity Pathway Analysis indicated significant networks in response to TPCK and Bay 11 respectively, including association to NF-κB. Bay-11 7082 demonstrated deregulated NF-κB related members of receptor mediated cell death signaling, i.e TRAF2 and TRADD, as well as deregulated members of the NF-κB signaling pathway from the cytoplasmic compartment, i.e RELB, in Raji cells. Comparably NF-κB network analysis of Raji- and DG-75 cells treated with Bay-11 7082 and Raji cells treated with TPCK demonstrated deregulation of NF-κB target genes CD69 and IL8. These data indicates that NF-kB may play a role in overcoming chemoresistance in BL cells with defective classical apoptosis signaling. NF-κB network analysis of Raji- and DG-75 cells treated with Bay-11 7082 and Raji cells treated with TPCK
Project description:Background: Lymphotoxin signaling via the lymphotoxin-β receptor (LTβR) has been implicated in several biological processes, ranging from development of secondary lymphoid organs, maintenance of splenic tissue, host defense against pathogens, autoimmunity, and lipid homeostasis. The major transcription factor that is activated by LTβR crosslinking is NF-κB. Two signaling pathways have been described that result in the activation of classical p50-RelA and alternative p52-RelB NF-κB heterodimers. Results: Using microarray analysis, we investigated the transcriptional response downstream of the LTβR in mouse embryoni fibroblasts (MEF) and its regulation by the RelA and RelB subunits of NF-κB. We describe novel LTβR-responsive genes that are regulated by RelA and/or RelB. Interestingly, we found that the majority of LTβR-regulated genes require the presence of both RelA and RelB, suggesting significant crosstalk between the two NF-κB activation pathways. Gene Ontology (GO) analysis confirmed that LTβR-NF-κB target genes are predominantly involved in the regulation of immune responses. However, other biological processes, such as apoptosis/cell death, cell cycle, angiogenesis, and taxis were also regulated by LTβR signaling. Moreover, we show that activation of the LTβR inhibits the expression of a key adipogenic transcription factor, peroxisome proliferator activated receptor-γ (pparg), suggesting that LTβR signaling may interfere with adipogenic differentiation. Conclusions: Thus, microarray analysis of LTβR-stimulated fibroblasts revealed further insight into the transcriptional response of LTβR signaling and its regulation by the NF-κB family members RelA and RelB. Keywords: cell type comparison (wt vs relA-/- vs relB-/-) after genetic modification using a time course for each cell type (wt, relA-/-, relB-/-) two time points were analysed (0h as control and 10h) using 3 technical replicates resulting in 18 samples in total
Project description:Mesenchymal stem cells (MSCs) are known to induce the conversion of activated T-cells into regulatory T-cells in vitro. The marker CD69 is a target of canonical NF-κB signaling and is transiently expressed upon activation; however, stable CD69 expression defines cells with immunoregulatory properties. Given its enormous therapeutic potential, we explored the molecular mechanisms underlying the induction of regulatory cells by MSCs. Peripheral blood CD3+ T-cells were activated and cultured in the presence or absence of MSCs. CD4+ cell mRNA expression was then characterized by microarray analysis. The drug BAY11-7082 and a siRNA against RELB were used to explore the differential roles of canonical and non-canonical NF-κB signaling, respectively. Flow cytometry and real-time PCR were used for analyses. Genes with immunoregulatory functions, CD69 and non-canonical NF-κB subunits (RELB and NFKB2) were all expressed at higher levels in lymphocytes co-cultured with MSCs. The frequency of CD69+ cells among lymphocytes cultured alone progressively decreased after activation. In contrast, the frequency of CD69+ cells increased significantly following activation in lymphocytes co-cultured with MSCs. Inhibition of canonical NF-κB signaling by BAY immediately following activation blocked the induction of CD69; however, inhibition of canonical NF-κB signaling on the 3rd day further induced the expression of CD69. Furthermore, late expression of CD69 was inhibited by RELB siRNA. These results indicate that the canonical NF-κB pathway controls the early expression of CD69 after activation; however, in an immunoregulatory context, late and sustained CD69 expression is promoted by the non-canonical pathway and is inhibited by canonical NF-κB signaling. In order to study the molecular basis by which Multipotent Mesenchymal Stromal/Stem Cells (MSC) exert their immune regulatory function, immunomagnetically purified CD3+ T-cells from the peripheral blood of 3 individuals were activated and cultured in the presence or absence of MSCs. Following 5 days, CD4+ and CD8+ T-cells were further immunomagnetically selected and their gene expression profiles were obtained by microarrays and compared. Paired samples from 3 individuals were used for this analysis.
Project description:NF-κB is a key regulator of innate and adaptive immunity and is implicated in the pathogenesis of acute kidney injury (AKI). The cell type-specific functions of NF-κB in the kidney are unknown; however, the pathway serves distinct functions in immune and tissue-parenchymal cells. We analyzed tubular epithelial-specific NF-κB signaling in a mouse model of ischemia-reperfusion injury (IRI)-induced AKI. NF-κB reporter activity and nuclear localization of phosphorylated NF-κB subunit p65 analyses in mice revealed widespread NF-κB activation in renal tubular epithelia and in interstitial cells following IRI that peaked at 2-3 days after injury. To genetically antagonize tubular epithelial NF-κB activity, we generated mice expressing the human NF-κB super-repressor IκBα∆N in renal proximal, distal, and collecting duct epithelial cells. These mice were protected from IRI-induced AKI, as indicated by improved renal function, reduced tubular apoptosis, and attenuated neutrophil and macrophage infiltration. Tubular NF-κB-dependent gene expression profiles revealed temporally distinct functional gene clusters for apoptosis, chemotaxis, and morphogenesis. Primary proximal tubular cells isolated from IκBα∆N-expressing mice exposed to hypoxia-mimetic agent cobalt chloride were protected from apoptosis and expressed reduced levels of chemokines. Our results indicate that postischemic NF-κB activation in renal-tubular epithelia aggravates tubular injury and exacerbates a maladaptive inflammatory response.
Project description:NF-κB is a key regulator of innate and adaptive immunity and is implicated in the pathogenesis of acute kidney injury (AKI). The cell type-specific functions of NF-κB in the kidney are unknown; however, the pathway serves distinct functions in immune and tissue-parenchymal cells. We analyzed tubular epithelial-specific NF-κB signaling in a mouse model of ischemia-reperfusion injury (IRI)-induced AKI. NF-κB reporter activity and nuclear localization of phosphorylated NF-κB subunit p65 analyses in mice revealed widespread NF-κB activation in renal tubular epithelia and in interstitial cells following IRI that peaked at 2-3 days after injury. To genetically antagonize tubular epithelial NF-κB activity, we generated mice expressing the human NF-κB super-repressor IκBα∆N in renal proximal, distal, and collecting duct epithelial cells. These mice were protected from IRI-induced AKI, as indicated by improved renal function, reduced tubular apoptosis, and attenuated neutrophil and macrophage infiltration. Tubular NF-κB-dependent gene expression profiles revealed temporally distinct functional gene clusters for apoptosis, chemotaxis, and morphogenesis. Primary proximal tubular cells isolated from IκBα∆N-expressing mice exposed to hypoxia-mimetic agent cobalt chloride were protected from apoptosis and expressed reduced levels of chemokines. Our results indicate that postischemic NF-κB activation in renal-tubular epithelia aggravates tubular injury and exacerbates a maladaptive inflammatory response.
Project description:The NF-κB pathway is a master regulator of inflammatory processes and is implicated in insulin resistance and pancreatic beta cell dysfunction in the metabolic syndrome. While canonical NF-κB signaling is well studied, there is little information on the divergent non-canonical NF-κB pathway in the context of pancreatic islet dysfunction in diabetes. Here, we demonstrate that pharmacological activation of the non-canonical NF-κB inducing kinase (NIK) disrupts glucose homeostasis in zebrafish in vivo. Further, we identify NIK as a critical negative regulator of beta cell function as pharmacological NIK activation results in impaired glucose-stimulated insulin secretion in mouse and human islets. NIK levels are elevated in pancreatic islets isolated from diet-induced obese (DIO) mice, which exhibit increased processing of non-canonical NF-κB components p100 to p52, and accumulation of RelB. Tumor necrosis factor α (TNFα) and receptor activator of NF-κB ligand (RANKL), two ligands associated with diabetes, induce NIK in islets. Mice with constitutive beta cell intrinsic NIK activation present impaired insulin secretion with DIO. NIK activation triggers the non-canonical NF-κB transcriptional network to induce genes identified in human type 2 diabetes genome-wide association studies linked to beta cell failure. These studies reveal that NIK contributes a central mechanism for beta cell failure in diet-induced obesity. We identify a role for Nuclear Factor inducing κB (NIK) in pancreatic beta cell failure. NIK activation disrupts glucose homeostasis in zebrafish in vivo and impairs glucose-stimulated insulin secretion in mouse and human islets in vitro. NIK activation also perturbs beta cell insulin secretion in a diet-induced obesity mouse model. These studies reveal that NIK contributes a central mechanism for beta cell failure in obesity. To uncover the role of NIK in pancreatic beta cells, we performed a gene expression microarray analysis comparing pancreatic islets with constitutive beta cell intrinsicNIK activation from the 16 week old mice (beta cell specific TRAF2 and TRAF2 knockout mice) to their controls (n=3 per group).
Project description:Proper regulation of nuclear factor κB (NF-κB) transcriptional activity is required for normal lymphocyte function, and deregulated NF-κB signaling can facilitate lymphomagenesis. We demonstrate that the API2-MALT1 fusion oncoprotein created by the recurrent t(11;18)(q21;q21) in mucosa-associated lymphoid tissue (MALT) lymphoma induces proteolytic cleavage of NF-κB–inducing kinase (NIK) at arginine 325. NIK cleavage requires the concerted actions of both fusion partners and generates a C-terminal NIK fragment that retains kinase activity and is resistant to proteasomal degradation. The resulting deregulated NIK activity is associated with constitutive noncanonical NF-κB signaling, enhanced B cell adhesion, and apoptosis resistance. Our study reveals the gain-of-function proteolytic activity of a fusion oncoprotein and highlights the importance of the noncanonical NF-κB pathway in B lymphoproliferative disease. This study compares nine t(11;18)-positive MALT lymphomas (8 from the stomach and 1 from lung) and eight translocation negative MALT lymphomas (all from the stomach) using gene set enrichment analysis (GSEA). All cases were subjected to Affymetrix U133A and U133B microarray analysis. The cases used in this study are the same cases used for the study by Hamoudi et al. (2010) entitled "Differential expression of NF-kB target genes in MALT lymphoma with and without chromosome translocation: insights into molecular mechanism" with GEO reference number: GSE18736 and PubMed ID: http://www.ncbi.nlm.nih.gov/pubmed/20520640 All cases were subjected to non-specific filtering to eliminate non-variant probes, then the U133A and U133B probes were collapsed and the collapsed set was subjected to GSEA using the NF-kB target gene set as described in Hamoudi et al. (2010) study mentioned above. The 34 samples in this study are identical to the ones done in the previous series except that the gene set enrichment was done on just those 34 samples and not the complete set.
Project description:Erianin has been reported to play key roles in suppressing a wide variety of tumors. Howbeit, the mechanism underlying the erianin in anti-carcinogenesis remains to be fully addressed. Half-maximal inhibitory concentration (IC50) was detected to determine the influence of erianin on melanoma in vitro. Subcutaneous xenografts were established to observe the effect of erianin on the proliferation of melanoma cells in vivo. Transcriptome screening was performed to identify the meaningful target. Molecular docking and western blot were performed to verified the GSK3α-NF-κB cascade reaction. We reported the finding of Erianin as an efficient inhibitor of melanoma. Erianin selectively inhibited the growth of melanoma cells, rather than normal human melanocyte cell line. Specifically, erianin downregulated the cellular GSK3α-NF-κB pathway to induce melanoma cell apoptosis. Collectively, we initially proved that erianin inhibited melanoma effectively, which was caused by inactivation of GSK3α-NF-κB signaling inducing melanoma cells apoptosis. Thus, the study implies that erianin provides a novel therapeutic strategy for melanoma therapy.
Project description:Proper regulation of nuclear factor κB (NF-κB) transcriptional activity is required for normal lymphocyte function, and deregulated NF-κB signaling can facilitate lymphomagenesis. We demonstrate that the API2-MALT1 fusion oncoprotein created by the recurrent t(11;18)(q21;q21) in mucosa-associated lymphoid tissue (MALT) lymphoma induces proteolytic cleavage of NF-κB–inducing kinase (NIK) at arginine 325. NIK cleavage requires the concerted actions of both fusion partners and generates a C-terminal NIK fragment that retains kinase activity and is resistant to proteasomal degradation. The resulting deregulated NIK activity is associated with constitutive noncanonical NF-κB signaling, enhanced B cell adhesion, and apoptosis resistance. Our study reveals the gain-of-function proteolytic activity of a fusion oncoprotein and highlights the importance of the noncanonical NF-κB pathway in B lymphoproliferative disease.