Project description:5' RNASeq of mRNA from Shewanella loihica PV-4 grown aerobically in Luria-Bertani broth (LB) and defined lactate minimal medium 5'-end mRNA profiles of mid-log phase bacterial cells growing in LB or lactate medium were generated by next-generation sequencing.
Project description:The microarray experiment compare the transcriptome of PV-4 wild type versus the deltahemH1 mutant, a PPIX accumulating strain. Only part of the data is used in the manuscript and we are working on this dataset for future manuscripts
Project description:The microarray experiment compare the transcriptome of PV-4 wild type versus the deltahemH1 mutant, a PPIX accumulating strain. Only part of the data is used in the manuscript and we are working on this dataset for future manuscripts The wild type and deltahemH1 cell were revived and then cultured into late log-phase for collection, when significant PPIX accumulation occurred. Three biological replicates for wild type and deltahemH1
Project description:Although members of the genus Shewanella have common features (e.g., the presence of decaheme c-type cytochromes [c-cyts]), they are widely variable in genetic and physiological features. The present study compared the current-generating ability of S. loihica PV-4 in microbial fuel cells (MFCs) with that of well-characterized S. oneidensis MR-1 and examined the roles of c-cyts in extracellular electron transfer. We found that strains PV-4 and MR-1 exhibited notable differences in current-generating mechanisms. While the MR-1 MFCs maintained a constant current density over time, the PV-4 MFCs continued to increase in current density and finally surpassed the MR-1 MFCs. Coulombic efficiencies reached 26% in the PV-4 MFC but 16% in the MR-1 MFCs. Although both organisms produced quinone-like compounds, anode exchange experiments showed that anode-attached cells of PV-4 produced sevenfold more current than planktonic cells in the same chamber, while planktonic cells of MR-1 produced twice the current of the anode-attached cells. Examination of the genome sequence indicated that PV-4 has more c-cyt genes in the metal reductase-containing locus than MR-1. Mutational analysis revealed that PV-4 relied predominantly on a homologue of the decaheme c-cyt MtrC in MR-1 for current generation, even though it also possesses two homologues of the decaheme c-cyt OmcA in MR-1. These results suggest that current generation in a PV-4 MFC is in large part accomplished by anode-attached cells, in which the MtrC homologue constitutes the main path of electrons toward the anode.
Project description:Deep-sea mining may lead to the release of high concentrations of metals into the surrounding seabed, which can disturb important ecosystem functions provided by microbial communities. Among these, the production of N2O and its reduction to N2 is of great relevance since N2O is an important greenhouse gas. Metal impacts on net N2O production by deep-sea bacteria are, however, currently unexplored. Here, we evaluated the effects of cadmium (Cd) on net N2O production by a deep-sea isolate, Shewanella loihica PV-4. We performed a series of Cd exposure incubations in oxic conditions and determined N2O fluxes during induced anoxic conditions, as well as the relative expression of the nitrite reductase gene (nirK), preceding N2O production, and N2O reductase gene (nosZ), responsible for N2O reduction. Net N2O production by S. loihica PV-4 exposed to Cd was strongly inhibited when compared to the control treatment (no metal). Both nirK and nosZ gene expression were inhibited in reactors with Cd, but nirK inhibition was stronger, supporting the lower net N2O production observed with Cd. The Cd inhibition of net N2O production observed in this study poses the question whether other deep-sea bacteria would undergo the same effects. Future studies should address this question as well as its applicability to complex communities and other physicochemical conditions, which remain to be evaluated.