Project description:Samples GSM206658-GSM206693: Acquired Stress resistance in S. cerevisiae: NaCl primary and H2O2 secondary Transcriptional timecourses of yeast cells exposed to 0.7M NaCl alone, 0.5mM H2O2 alone, or 0.5mM H2O2 following 0.7M NaCl, all compared to an unstressed sample. Repeated using msn2∆ strain. Samples GSM291156-GSM291196: Transcriptional response to stress in strains lacking MSN2 and/or MSN4 Transcriptional timecourses of yeast cells (WT, msn2∆, msn4∆, or msn2∆msn4∆) exposed to 0.7M NaCl for 45 minutes or 30-37˚C Heat Shift for 15 min compared to an unstressed sample of the same strain. Keywords: Stress Response
Project description:Reprogramming a non-methylotrophic industrial host, such as Saccharomyces cerevisiae, to a synthetic methylotroph reprents a huge challenge due to the complex regulation in yeast. Through TMC strategy together with ALE strategy, we completed a strict synthetic methylotrophic yeast that could use methanol as the sole carbon source. However, how cells respond to methanol and remodel cellular metabolic network on methanol were not clear. Therefore, genome-scale transcriptional analysis was performed to unravel the cellular reprograming mechanisms underlying the improved growth phenotype.
Project description:The yeast PP2A-CDC55 phosphatase regulates the transcriptional response to hyperosmolarity stress by regulating Msn2 and Msn4 [Time course 1]
Project description:Transcriptional profiling of Saccharomyces cerevisiae cells comparing the W303-1A wildtype with the W303-1A double mutant for MSN2 and MSN4 during zinc deficient conditions Keywords: Genetic modification with zinc limitation
Project description:The pattern of gene transcription in Saccharomyces cerevisiae is strongly affected by the presence of glucose. An increased activity of protein kinase A (PKA), triggered by a rise in the intracellular concentration of cAMP, can account for many of the effects of glucose on transcription. To investigate the requirement of PKA for glucose control of gene expression, we have analyzed global transcription in strains devoid of PKA activity. In S. cerevisiae three genes, TPK1, TPK2, TPK3, encode catalytic subunits of PKA and the triple mutant tpk1 tpk2 tpk3 is unviable. We have worked, therefore, with two strains, tpk1 tpk2 tpk3 yak1 and tpk1 tpk2 tpk3 msn2 msn4, that bear suppressor mutations,. We have identified different classes of genes that can be induced, or repressed, by glucose in the absence of PKA. Among these genes, some are also controlled by a redundant signalling pathway involving PKA activation, while others do not respond to an increase in cAMP concentration. On the other hand, among genes which do not respond to glucose in the absence of PKA, some show a full response to increased cAMP levels, even in the absence of glucose, while others appear to require the cooperation of different signalling pathways. The goal of the present study was to investigate the occurrence of PKA-independent glucose signalling in S. cerevisiae. To this end, we have used global transcription analysis to study the effects of glucose on yeast strains completely devoid of PKA activity. In S. cerevisiae three genes TPK1, TPK2,and TPK3 encode catalytic subunits of PKA. While strains expressing only one of these genes grow normally, a triple null mutant (tpk1 tpk2 tpk3) is not viable (Toda et al 1987). Identification of different mutations able to suppress the growth defect of the triple mutant (Garrett and Broach 1989, Reinders et al 1998, Smith et al 1998) has allowed to determine what is the crucial function of PKA. As shown in Fig.1, PKA is needed to counteract the negative effect of the protein kinase Yak1 on yeast growth (Hartley et al 1994, Moriya et al 2001). In the presence of PKA the protein kinase Rim15 (Reinders et al 1998) and the transcription factors Msn2 and Msn4 (Görner et al 1998) can be phosphorylated and exported to the cytoplasm, transcription of the YAK1 gene, which is activated by Msn2/Msn4 (Smith et al 1998), is reduced, Yak1 levels remain low and growth is not hindered. In the absence of PKA, Rim15 remains in the nucleus where it can activate Msn2/Msn4 (Cameroni et al 2004) that turn on YAK1 transcription, thus blocking growth. This explains why strains lacking Rim15, Msn2/Msn4 or Yak1 no longer require PKA for growth. In this work we have used two isogenic strains lacking PKA and carrying the suppressor mutations msn2 msn4 or yak1. Two different suppressor mutants were used with the aim to enable a dissection of effects of the lack of PKA and effects of the suppressor mutations themselves.
Project description:Transcriptional profiling of Saccharomyces cerevisiae cells comparing the W303-1A wildtype with the W303-1A double mutant for MSN2 and MSN4 during zinc deficient conditions Keywords: Genetic modification with zinc limitation Two condition experiment, W303-1A vs W303-1A delta MSN2, MSN4. Biological replicates: 2 wildtype, 2 knock-out, independently grown and harvested.