Project description:Global warming substantially changes precipitation patterns in the Tibetan plateau, with projection of increased precipitation in southern and northern Tibet but decreased precipitation in the center. Understanding mechanisms of such changes in greenhouse gas emissions is of vital importance in predicting ecosystem feedbacks to climate changes. Nonetheless, it has been hampered by limited knowledge in soil microbial communities, one of the major drivers of greenhouse gas emission. Here, we report a field experiment simulating drying and wetting conditions in the Tibetan grassland. Our field site is located at the Haibei Alpine Grassland Ecosystem Research Station in the northeast of Tibet Plateau, China, and we employed GeoChip 5.0 180K to analyze microbial responses.
Project description:Global warming substantially changes precipitation patterns in the Tibetan plateau, with projection of increased precipitation in southern and northern Tibet but decreased precipitation in the center. Understanding mechanisms of such changes in greenhouse gas emissions is of vital importance in predicting ecosystem feedbacks to climate changes. Nonetheless, it has been hampered by limited knowledge in soil microbial communities, one of the major drivers of greenhouse gas emission. Here, we report a field experiment simulating drying and wetting conditions in the Tibetan grassland. Our field site is located at the Haibei Alpine Grassland Ecosystem Research Station in the northeast of Tibet Plateau, China, and we employed GeoChip 5.0 180K to analyze microbial responses. 18 samples were collected from 3 plots in Haibei Station, with 6 replicates in each plot
Project description:The Qing-Tibet Plateau is characterized by low oxygen pressure, which is an important biomedical and ecological stressor. However, the variation in gene expression during periods of stay on the plateau has not been well studied. We recruited eight volunteers to stay on the plateau for 3, 7 and 30 days. Human Clariom D arrays were used to measure changes in the mRNA expression profiles in these volunteers. ANOVA indicated that 699 genes were significantly differentially expressed in response to entering the plateau during hypoxic exposure. The genes with changes in transcript abundance were involved in the terms phosphoprotein, acetylation, protein binding, and protein transport. Furthermore, numerous genes involved in hematopoietic functions, including erythropoiesis and immunoregulation, were differentially expressed in response to acute hypoxia. This phenomenon may also explain why the majority of people entering the plateau do not have excessive erythrocyte proliferation and are susceptible to infection.
Project description:Protein abundance changes and reversible protein phosphorylation (RPP) play important roles in regulating hypometabolism but have never been documented in overwintering frogs at high altitudes. To test the hypothesis that protein abundance and protein phosphorylation change in response to winter hibernation, we conducted a comprehensive and quantitative proteomic and phosphoproteomic analysis of the liver of the Xizang plateau frog, Nanorana parkeri, living on the Qinghai-Tibet Plateau.
Project description:Land cover change has long been recognized that marked effect the amount of soil organic carbon. However, little is known about microbial-mediated effect processes and mechanism on soil organic carbon. In this study, the soil samples in a degenerated succession from alpine meadow to alpine steppe meadow in Qinghai-Tibetan Plateau degenerated, were analyzed by using GeoChip functional gene arrays.
Project description:Soil transplant serves as a proxy to simulate climate change in realistic climate regimes. Here, we assessed the effects of climate warming and cooling on soil microbial communities, which are key drivers in EarthM-bM-^@M-^Ys biogeochemical cycles, four years after soil transplant over large transects from northern (N site) to central (NC site) and southern China (NS site) and vice versa. Four years after soil transplant, soil nitrogen components, microbial biomass, community phylogenetic and functional structures were altered. Microbial functional diversity, measured by a metagenomic tool named GeoChip, and phylogenetic diversity are increased with temperature, while microbial biomass were similar or decreased. Nevertheless, the effects of climate change was overridden by maize cropping, underscoring the need to disentangle them in research. Mantel tests and canonical correspondence analysis (CCA) demonstrated that vegetation, climatic factors (e.g., temperature and precipitation), soil nitrogen components and CO2 efflux were significantly correlated to the microbial community composition. Further investigation unveiled strong correlations between carbon cycling genes and CO2 efflux in bare soil but not cropped soil, and between nitrogen cycling genes and nitrification, which provides mechanistic understanding of these microbe-mediated processes and empowers an interesting possibility of incorporating bacterial gene abundance in greenhouse gas emission modeling. Fifty four samples were collected from three soil types (Phaeozem,Cambisol,Acrisol) in three sites (Hailun, Fengqiu and Yingtan) along a latitude with reciprocal transplant; Both with and without maize cropping in each site; Three replicates in every treatments.