Project description:Use of an immune-specific microarray for identifying transcriptome profiles associated to VHSV infection or vaccination with a G gene- DNA vaccine in turbot (Scophthalmus maximus)
Project description:Turbot (Scophthalmus maximus) is a valuable resource for aquaculture in Galicia (NW Spain). Since it has been observed that viral hemorraghic septicaemia can affect turbot, among other finfish, increase of knowledge in molecular factors affected by the exposure to pathogen could help to develop strategies of VHSV prevention and treatment. In this study, it has been used a custom oligo-microarray by Agilent to identify genes differentially expressed in several turbot families showing different susceptibility to VHSV. Fishes from each family (n=30) were injected with either VHSV (Resistant) or control medium (Naive) and monitored for 30 days, when each group was splitted in two new groups and rechallenged with VHSV (Infected) or control medium (Control). Gene expression at the head kidney was evaluated, showing than an important proportion of the variation of the gene expression profiles is explained by the genetic background (family). After infection, fish showed an up-regulation of the interferon-induced Mx2 gene, the IL-8 gene and the VHSV-induced protein 5 gene compared with control groups. Familes with high mortality after VHSV infection showed lower levels of expression of molecules secreted in the mucus and, by contrast, higher expression of genes involved in viral entrance into target cells.
Project description:Cell types of turbot blood leukocytes remian unknown. We used single cell RNA sequencing (scRNA-seq) to analyze the cell types of turbot blood leukocytes.
Project description:With the aim of shedding light on the protection conferred by the DNA vaccines based in the G glycoprotein of viral haemorrhagic septicaemia virus (VHSV) in turbot (Scophthalmus maximus) we have used a specific microarray highly enriched in antiviral sequences to carry out the transcriptomic study associated to VHSV DNA vaccination/infection. The differential gene expression pattern in response to empty plasmid (pMCV1.4) and DNA vaccine (pMCV1.4-G860) intramuscular administration with regard to non-stimulated turbot was analyzed in head kidney at 8, 24 and 72 hours post-vaccination. Moreover, the effect of VHSV infection one month after immunization was also analyzed in vaccinated and non-vaccinated fish at the same time points.
Project description:Turbot (Scophthalmus maximus) is a valuable resource for aquaculture in Galicia (NW Spain). Since it has been observed that viral hemorraghic septicaemia can affect turbot, among other finfish, increase of knowledge in molecular factors affected by the exposure to pathogen could help to develop strategies of VHSV prevention and treatment. In this study, it has been used a custom oligo-microarray by Agilent to identify genes differentially expressed in several turbot families showing different susceptibility to VHSV. Fishes from each family (n=30) were injected with either VHSV (Resistant) or control medium (Naive) and monitored for 30 days, when each group was splitted in two new groups and rechallenged with VHSV (Infected) or control medium (Control). Gene expression at the head kidney was evaluated, showing than an important proportion of the variation of the gene expression profiles is explained by the genetic background (family). After infection, fish showed an up-regulation of the interferon-induced Mx2 gene, the IL-8 gene and the VHSV-induced protein 5 gene compared with control groups. Familes with high mortality after VHSV infection showed lower levels of expression of molecules secreted in the mucus and, by contrast, higher expression of genes involved in viral entrance into target cells. 4 different families of turbot were subjected to challenged with VHSV and splitted after 30 days in 2